Skip to main content
Log in

NMR Frequency Shifts and Phase Identification in Superfluid \(^3\hbox {He}\)

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The pressure dependence of the order parameter in superfluid \(^3\hbox {He}\) is amazingly simple. In the Ginzburg–Landau regime, i.e., close to \(T_\mathrm{c}\), the square of the order parameter can be accurately measured by its proportionality to NMR frequency shifts and is strictly linear in pressure. This behavior is replicated for superfluid \(^3\hbox {He}\) imbibed in isotropic and anisotropic silica aerogels. The proportionality factor is constrained by the symmetry of the superfluid state and is an important signature of the corresponding superfluid phase. For the purpose of identifying various new superfluid states in the p-wave manifold, the order parameter amplitude of superfluid \(^3\hbox {He}\)-A is a useful reference, and this simple pressure dependence greatly facilitates identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3 (Taylor and Francis, Routledge, 1990)

    Book  MATH  Google Scholar 

  2. A.J. Leggett, Rev. Mod. Phys. 47, 331 (1975)

    Article  ADS  Google Scholar 

  3. W.P. Halperin, H. Choi, J.P. Davis, J. Pollanen, J. Phys. Soc. Jpn. 77, 111002 (2008)

    Article  ADS  Google Scholar 

  4. M.R. Rand, Nonlinear spin dynamics and magnetic field distortion of the superfluid \(^3\)He-B order parameter. Ph.D. thesis, Northwestern University (1996)

  5. P.E. Schiffer, Studies of the superfluid phases of helium three and the magnetization of thin solid films of helium three. Ph.D. thesis, Stanford University (1993)

  6. P. Schiffer, M.T. O’Keefe, H. Fukuyama, D.D. Osheroff, Phys. Rev. Lett. 69, 3096 (1992)

    Article  ADS  Google Scholar 

  7. J. Pollanen, J.I.A. Li, C.A. Collett, W.J. Gannon, W.P. Halperin, Phys. Rev. Lett. 107, 195301 (2011)

    Article  ADS  Google Scholar 

  8. J. Pollanen, J.I.A. Li, C.A. Collett, W.J. Gannon, W.P. Halperin, J.A. Sauls, Nat. Phys. 8, 317 (2012)

    Article  Google Scholar 

  9. D.D. Osheroff, Phys. Rev. Lett. 33, 1009 (1974). https://doi.org/10.1103/PhysRevLett.33.1009

    Article  ADS  Google Scholar 

  10. M.R. Rand et al., Physica B 194, 805 (1994)

    Article  ADS  Google Scholar 

  11. C.M. Gould, Physica B 178, 266 (1992)

    Article  ADS  Google Scholar 

  12. V.V. Dmitriev, A.A. Senin, A.A. Soldatov, A.N. Yudin, Phys. Rev. Lett. 115, 165304 (2015)

    Article  ADS  Google Scholar 

  13. E.V. Thuneberg, Phys. Rev. B 36, 3583 (1987)

    Article  ADS  Google Scholar 

  14. H. Choi, J.P. Davis, J. Pollanen, T.M. Haard, W.P. Halperin, Phys. Rev. B 75, 174503 (2007)

    Article  ADS  Google Scholar 

  15. H. Choi, J.P. Davis, J. Pollanen, T.M. Haard, W.P. Halperin, Phys. Rev. B 87, 019904(E) (2013)

    Article  ADS  Google Scholar 

  16. D. Rainer, J.W. Serene, Phys. Rev. B 13, 4745 (1976)

    Article  ADS  Google Scholar 

  17. E.V. Thuneberg, S.K. Yip, M. Fogelström, J.A. Sauls, Phys. Rev. Lett. 80, 2861 (1998)

    Article  ADS  Google Scholar 

  18. N.D. Mermin, C. Stare, Phys. Rev. Lett. 30, 1135 (1973)

    Article  ADS  Google Scholar 

  19. A.D. Gongadze, G.E. Gurgenishvili, G.A. Khardze, Sov. Phys. JETP 51, 310 (1980)

    ADS  Google Scholar 

  20. Y.M. Bunkov, G.E. Volovik, Europhys. Lett. 21, 837 (1993)

    Article  ADS  Google Scholar 

  21. W.F. Brinkman, H. Smith, Phys. Lett. 51, 449 (1975)

    Article  Google Scholar 

  22. L.R. Corruccini, D.D. Osheroff, Phys. Rev. B 17, 126 (1978)

    Article  ADS  Google Scholar 

  23. V.V. Dmitriev et al., Phys. Rev. B 59, 165 (1999)

    Article  ADS  Google Scholar 

  24. J.J. Wiman, J.A. Sauls, Phys. Rev. B 92, 144515 (2015). https://doi.org/10.1103/PhysRevB.92.144515

    Article  ADS  Google Scholar 

  25. H. Choi, K. Yawata, T.M. Haard, J.P. Davis, G. Gervais, N. Mulders, P. Sharma, J.A. Sauls, Phys. Rev. Lett. 93, 145301 (2004)

    Article  ADS  Google Scholar 

  26. J.J. Wiman, J.A. Sauls, Phys. Rev. Lett. 121, 045301 (2018). https://doi.org/10.1103/PhysRevLett.121.045301

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge contributions from Jim Sauls, Johannes Pollanen, Jia Li, and Josh Wiman. Research was supported by the National Science Foundation, Division of Materials Research: DMR-1602542.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zimmerman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmerman, A.M., Nguyen, M.D. & Halperin, W.P. NMR Frequency Shifts and Phase Identification in Superfluid \(^3\hbox {He}\). J Low Temp Phys 195, 358–364 (2019). https://doi.org/10.1007/s10909-018-2087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2087-9

Keywords

Navigation