Skip to main content
Log in

Impact of Nano-Sized Diluted Magnetic Semiconductors Addition on (Cu,Tl)1234 Superconducting Phase

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The effect of Zn0.95Ni0.05O nanoparticles addition on the superconducting properties of (Cu0.25Tl0.75)Ba2Ca3Cu4O12−δ superconducting phase was studied. Superconducting samples of type (Zn0.95Ni0.05O)x(Cu0.25Tl0.75)Ba2Ca3Cu4O12−δ, x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 wt%, were prepared via a single step of solid-state reaction technique at 850 °C under ambient pressure. X-ray powder diffraction, scanning electron microscope, and energy dispersive X-ray were used for samples characterization. The superconducting properties were investigated using the electrical resistivity and DC magnetization measurements. The results showed that the addition of nano-Zn0.95Ni0.05O up to x = 0.6 wt% enhanced the phase formation and improved the superconducting transition temperature Tc in contrary for x > 0.6 wt%, Tc was decreased as x increased. Low field magnetization measurement, H = 20 Gauss, was conducted to the samples to determine the magnetic superconducting transition temperature Tc-mag. Both Tc and Tc-mag were found to have the same behavior with increasing x, whereas the values of Tc-mag were slightly lower than that for Tc values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Iyo, Y. Tanaka, Y. Ishiura, M. Tokumoto, K. Tokiwa, T. Watanabe, H. Ihara, Supercond. Sci. Technol. 14, 504–510 (2001). https://doi.org/10.1088/0953-2048/14/7/313

    Article  ADS  Google Scholar 

  2. A.A. Khurram, N.A. Khan, M. Mumtaz, Phys. C 469, 279–282 (2009). https://doi.org/10.1016/j.physc.2009.02.008

    Article  ADS  Google Scholar 

  3. N.A. Khan, Y. Sekita, H. Ihara, Supercond. Sci. Technol. 15, 613–616 (2002). https://doi.org/10.1088/0953-2048/15/4/322

    Article  ADS  Google Scholar 

  4. S.M. Hasnain, M. Mumtaz, N.A. Khan, J. Supercond. Nov. Magn. 24, 1653–1657 (2011). https://doi.org/10.1007/s10948-010-1073-5

    Article  Google Scholar 

  5. N.A. Khan, A.A. Khurram, A. Javed, Phys. C 422, 9–15 (2005). https://doi.org/10.1016/j.physc.2005.02.013

    Article  ADS  Google Scholar 

  6. H. Ihara, K. Tokiwa, K. Tanaka, T. Tsukamoto, T. Watanabe, H. Yamamoto, A. Iyo, M. Tokumoto, M. Umeda, Phys. C 282–287, 957–958 (1997). https://doi.org/10.1016/S0921-4534(97)00592-3

    Article  Google Scholar 

  7. H. Ihara, K. Tokiwa, H. Ozawa, M. Hirabayashi, A. Negishi, H. Matuhata, Y.S. Song, Jpn. J. Appl. Phys. 33, L503 (1994). https://doi.org/10.1143/JJAP.33.L503

    Article  ADS  Google Scholar 

  8. A. Iyo, K. Tokiwa, N. Terada, M. Tokumoto, M. Hirabayashi, H. Ihara, Adv. Supercond. 8, 289–292 (1996). https://doi.org/10.1007/978-4-431-66871-8_61

    Google Scholar 

  9. H. Ihara, K. Tanaka, Y. Tanaka, A. Iyo, N. Terada, M. Tokumoto, M. Ariyama, I. Hase, A. Sundaresan, N. Hamada, S. Miyashita, K. Tokiwa, T. Watanabe, Phys. C 341–348, 487–488 (2000). https://doi.org/10.1016/S0921-4534(00)00555-4

    Article  Google Scholar 

  10. N.A. Khan, Y. Sekita, N. Terada, H. Ihara, Supercond. Sci. Technol. 14, 603–606 (2001). https://doi.org/10.1088/0953-2048/14/8/315

    Article  ADS  Google Scholar 

  11. P. Badica, A. Iyo, A. Crisan, H. Ihara, Supercond. Sci. Technol. 15, 975–982 (2002)

    Article  ADS  Google Scholar 

  12. N.H. Mohammed, M. Roumié, R. Awad, D. El-Said Bakeer, B. Nsouli, J. Supercond. Nov. Magn. 23, 465–474 (2010). https://doi.org/10.1007/s10948-009-0599-x

    Article  Google Scholar 

  13. I.E. Agranovski, A.Y. Ilyushechkin, I.S. Altman, T.E. Bostrom, M. Choi, Phys. C 434, 115–120 (2006). https://doi.org/10.1016/j.physc.2005.12.005

    Article  ADS  Google Scholar 

  14. Z.Y. Jia, H. Tang, Z.Q. Yang, Y.T. Xing, Y.Z. Wang, G.W. Qiao, Phys. C 337, 130–132 (2000). https://doi.org/10.1016/S0921-4534(00)00072-1

    Article  ADS  Google Scholar 

  15. M. Annabi, A. M’chirgui, F. Ben Azzouz, M. Zouaoui, M. Ben Salem, Phys. C 405, 25–33 (2004). https://doi.org/10.1016/j.physc.2004.01.012

    Article  ADS  Google Scholar 

  16. R. Awad, J. Supercond. Nov. Magn. 21, 461–466 (2008). https://doi.org/10.1007/s10948-008-0385-1

    Article  Google Scholar 

  17. N.H. Mohammed, J. Supercond. Nov. Magn. 25, 45–53 (2012). https://doi.org/10.1007/s10948-011-1207-4

    Article  Google Scholar 

  18. H. Ohno, Science 281, 951–956 (1998). https://doi.org/10.1126/science.281.5379.951

    Article  ADS  Google Scholar 

  19. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Science 291, 854–856 (2001). https://doi.org/10.1126/science.1056186

    Article  ADS  Google Scholar 

  20. P.V. Radovanovic, D.R. Gamelin, Phys. Rev. Lett. 91, 1572021–1–1572021-4 (2003). https://doi.org/10.1103/PhysRevLett.91.157202

    Article  Google Scholar 

  21. G. Pei, C. Xia, S. Cao, J. Zhang, W. Feng, X. Jun, J. Magn. Magn. Mater. 302, 340–342 (2006). https://doi.org/10.1016/j.jmmm.2005.09.029

    Article  ADS  Google Scholar 

  22. C.J. Cong, J.H. Hong, Q.Y. Liu, L. Liao, K.L. Zhang, Solid State Commun. 138, 511–515 (2006). https://doi.org/10.1016/j.ssc.2006.04.020

    Article  ADS  Google Scholar 

  23. S. Thota, T. Dutta, J. Kumar, J. Phys. Condens. Matter 18, 2473–2486 (2006). https://doi.org/10.1088/0953-8984/18/8/012

    Article  ADS  Google Scholar 

  24. B.B. Li, X.Q. Xiu, R. Zhang, Z.K. Tao, L. Chen, Z.L. Xie, Y.D. Zheng, Z. Xie, Mater. Sci. Semicond. Process. 9, 141–145 (2006). https://doi.org/10.1016/j.mssp.2006.01.074

    Article  Google Scholar 

  25. Z.X. Cheng, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, P. Munroe, J. Phys. D Appl. Phys. 40, 6518–6521 (2007). https://doi.org/10.1088/0022-3727/40/21/008

    Article  ADS  Google Scholar 

  26. X.L. Zhang, R. Qiao, Y. Li, R. Qiu, Y.S. Kang, Materials Research Society Symposium Proceedings (2007), p. 957. https://doi.org/10.1557/PROC-0957-K10-24

  27. M. El-Hilo, A.A. Dakhel, A.Y. Ali-Mohamed, J. Magn. Magn. Mater. 321, 2279–2283 (2009). https://doi.org/10.1016/j.jmmm.2009.01.040

    Article  ADS  Google Scholar 

  28. W. Lojkowski, A. Gedanken, E. Grzanka, A. Opalinska, T. Strachowski, R. Pielaszek, A. Tomaszewska-Grzeda, S. Yatsunenko, M. Godlewski, H. Matysiak, K.J. Kurzydłowski, J. Nanopart. Res. 11, 1991–2002 (2009). https://doi.org/10.1007/s11051-008-9559-9

    Article  ADS  Google Scholar 

  29. T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Phys. E Low-Dimens. Syst. Nanostruct. 10, 260–264 (2001). https://doi.org/10.1016/S1386-9477(01)00095-9

    Article  ADS  Google Scholar 

  30. M. Annabi, I. Bouchoucha, F. Ben Azzouz, M. Ben Salem, in IOP Conference Series: Materials Science and Engineering, vol. 13 (2010), p. 012009. https://doi.org/10.1088/1757-899x/13/1/012009

  31. I. Bouchoucha, F. Ben Azzouz, M. Annabi, M. Zouaoui, M. Ben Salem, Phys. C 470, 262–268 (2010). https://doi.org/10.1016/j.physc.2009.11.034

    Article  ADS  Google Scholar 

  32. B.A. Albiss, I.M. Obaidat, M. Gharaibeh, H. Ghamlouche, S.M. Obeidat, Solid State Commun. 150, 1542–1547 (2010). https://doi.org/10.1016/j.ssc.2010.06.001

    Article  ADS  Google Scholar 

  33. Y.F. Zhang, M. Izumi, Y.J. Li, M. Murakami, T. Gao, Y.S. Liu, P.L. Li, Phys. C 471, 840–842 (2011). https://doi.org/10.1016/j.physc.2011.05.069

    Article  ADS  Google Scholar 

  34. I. Karaca, S. Çelebi, A. Varilci, A.I. Malik, Supercond. Sci. Technol. 16, 100 (2003). https://doi.org/10.1088/0953-2048/16/1/318

    Article  ADS  Google Scholar 

  35. A. Ghattas, M. Annabi, M. Zouaoui, F. Ben Azzouz, M. Ben Salem, Phys. C 468, 31–38 (2008). https://doi.org/10.1016/j.physc.2007.10.006

    Article  ADS  Google Scholar 

  36. N.A. Khan, A. Saleem, S.T. Hussain, J. Supercond. Nov. Magn. 25, 1725–1733 (2012). https://doi.org/10.1007/s10948-012-1512-6

    Article  Google Scholar 

  37. W. Kong, R. Abd-Shukor, J. Supercond. Nov. Magn. 23, 257–263 (2010). https://doi.org/10.1007/s10948-009-0524-3

    Article  Google Scholar 

  38. A.I. Abou-Aly, M.M.H. Abdel Gawad, R. Awad, I.G. Eldeen, J. Supercond. Nov. Magn. 24, 2077–2084 (2011). https://doi.org/10.1007/s10948-011-1171-z

    Article  Google Scholar 

  39. A.I. Abou Aly, N.H. Mohammed, R. Awad, D. El-Said Bakeer, J. Supercond. Nov. Magn. 26, 2419–2428 (2013). https://doi.org/10.1007/s10948-012-1825-5

    Article  Google Scholar 

  40. E. Guilmeau, B. Andrzejewski, J.G. Noudem, Phys. C 387, 382–390 (2003). https://doi.org/10.1016/S0921-4534(02)02360-2

    Article  ADS  Google Scholar 

  41. J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, Y. Zhang, Mater. Res. Bull. 46, 1207–1210 (2011). https://doi.org/10.1016/j.materresbull.2011.04.008

    Article  Google Scholar 

  42. D. Paul Joseph, S. Ayyappan, C. Venkateswaran, J. Alloys Compd. 415, 225–228 (2006). https://doi.org/10.1016/j.jallcom.2005.04.218

    Article  Google Scholar 

  43. P.W. Anderson, Phys. Rev. Lett. 67, 2092 (1991). https://doi.org/10.1103/PhysRevLett.67.2092

    Article  ADS  Google Scholar 

  44. A.I. Abou-Aly, R. Awad, M. Kamal, M. Anas, J. Low Temp. Phys. 163, 184–202 (2011). https://doi.org/10.1007/s10909-010-0339-4

    Article  ADS  Google Scholar 

  45. H. Salamati, P. Kameli, Solid State Commun. 125, 407–411 (2003). https://doi.org/10.1016/S0038-1098(02)00809-8

    Article  ADS  Google Scholar 

  46. E. Brecht, W.W. Schmahl, G. Miehe, M. Rodewald, H. Fuess, N.H. Andersen, J. Hanßmann, T. Wolf, Phys. C 265, 53–66 (1996). https://doi.org/10.1016/0921-4534(96)00255-9

    Article  ADS  Google Scholar 

  47. A. Mellekh, M. Zouaoui, F. Ben Azzouz, M. Annabi, M. Ben Salem, Solid State Commun. 140, 318–323 (2006). https://doi.org/10.1016/j.ssc.2006.08.008

    Article  ADS  Google Scholar 

  48. J. Zhang, F. Liu, G. Cheng, J. Shang, J. Liu, S. Cao, Z. Liu, Phys. Lett. A 201, 70–76 (1995). https://doi.org/10.1016/0375-9601(95)00237-W

    Article  ADS  Google Scholar 

  49. H.K. Barik, S.K. Ghorai, S. Bhattacharya, D. Kilian, B.K. Chaudhuri, J. Mater. Res. 15, 1076–1082 (2000). https://doi.org/10.1557/JMR.2000.0155

    Article  ADS  Google Scholar 

  50. H. Kojima, J. Yamamoto, Y. Mori, M.K.R. Khan, H. Tanabe, I. Tanaka, Phys. C 293, 14–19 (1997). https://doi.org/10.1016/S0921-4534(97)01500-1

    Article  ADS  Google Scholar 

  51. A.G. Joshi, C.G.S. Pillai, P. Raj, S.K. Malik, Solid State Commun. 118, 445–448 (2001). https://doi.org/10.1016/S0038-1098(01)00149-1

    Article  ADS  Google Scholar 

  52. H. Kishan, V.P.S. Awana, T.M. de Oliveira, S. Alam, M. Saito, O.F. de Lima, Phys. C 458, 1–5 (2007). https://doi.org/10.1016/j.physc.2007.02.014

    Article  ADS  Google Scholar 

  53. M. Irfan, N.A. Khan, Int. J. Mod. Phys. B 25, 3853–3861 (2011). https://doi.org/10.1142/S0217979211101491

    Article  ADS  Google Scholar 

  54. Y. Zhao, M. Ionescu, J. Horvat, A.H. Li, S.X. Dou, Supercond. Sci. Technol. 17, 1247–1252 (2004). https://doi.org/10.1088/0953-2048/17/11/004

    Article  ADS  Google Scholar 

  55. E. Taylan Koparan, A. Surdu, A. Awawdeh, A. Sidorenko, E. Yanmaz, J. Supercond. Nov. Magn. 25, 1761–1767 (2012). https://doi.org/10.1007/s10948-012-1533-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to the Superconductivity and Metallic—Glass Lab, Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt, for aiding with the experimental procedures. Special thanks to prof. M. M. Elokr due to preparation of nano-Zn0.95Ni0.05O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anas, M., El-Shorbagy, G.A. Impact of Nano-Sized Diluted Magnetic Semiconductors Addition on (Cu,Tl)1234 Superconducting Phase. J Low Temp Phys 194, 183–196 (2019). https://doi.org/10.1007/s10909-018-2081-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2081-2

Keywords

Navigation