Skip to main content
Log in

Equilibrium of Methane and Carbon Dioxide Hydrates Below the Freezing Point of Water: Literature Review and Modeling

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This work presents a review of literature data of methane and carbon dioxide hydrate equilibrium at low temperatures. Constants of Arrhenius-type equation accurately determined for the mentioned lines which allow calculating the hydrate equilibrium pressure at any temperature below the quadruple point for both systems contain ice or supercooled water. Through intersection analysis, new accurate quadruple points were determined. Interpretations based on flash calculations by high accurate equations of states shown enthalpies of clathrate formation/dissociation, for equilibrium below quadruple point, lead to the similarity of Clapeyron and Clausius–Clapeyron approaches. Based on equality of equilibrium conditions at the quadruple point, new hydration numbers were calculated. Gamma–phi approach through high accurate equations of states of GERG-2008 and CG for the prediction of VHIw three-phase equilibrium line was evaluated. Commercial packages of Multiflash and PVTsim and open-source codes of CSMGem and CSMHYD were used to model the phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.D. Sloan Jr., C. Koh, Clathrate Hydrates of Natural Gases (CRC Press, Boca Raton, 2007)

    Book  Google Scholar 

  2. U. Hiroki, H. Akiba, S. Akatsu, R. Ohmura, New J. Chem. 39, 8254–8262 (2015)

    Article  Google Scholar 

  3. J.M. Brooks, H.B. Cox, W.R. Bryant, M.C. Kennicutt, R.G. Mann, T.J. McDonald, Org. Geochem. 10, 221–234 (1986)

    Article  Google Scholar 

  4. M. Kastner, K.A. Kvenvolden, T.D. Lorenson, Earth Planet. Sci. Lett. 156, 173–183 (1998)

    Article  ADS  Google Scholar 

  5. O. Mousis, J.L. Lunine, K.E. Mandt, E. Schindhelm, H.A. Weaver, S.A. Stern, J.H. Waite, R. Gladstone, A. Moudens, Icarus 225, 856–861 (2013)

    Article  ADS  Google Scholar 

  6. D. Ambuehl, M.E. Madden, Icarus 234, 45–52 (2014)

    Article  ADS  Google Scholar 

  7. R. Llopis, E. Torrella, R. Cabello, D. Sanchez, Int. J. Refrig. 35, 810–816 (2012)

    Article  Google Scholar 

  8. A. McCulloch, J. Fluor. Chem. 123, 21–29 (2003)

    Article  Google Scholar 

  9. W. Wu, B. Wong, W. Shi, X. Li, Renew. Sustain. Energy Rev. 31, 681–707 (2014)

    Article  Google Scholar 

  10. J. Javanmardi, Kh Nasrifar, S.H. Najibi, M. Moshfeghian, Appl. Therm. Eng. 25, 1708–1723 (2005)

    Article  Google Scholar 

  11. Z.R. Chong, S.H.B. Yang, P. Babu, P. Linga, X.S. Li, Appl. Energy 162, 1633–1652 (2016)

    Article  Google Scholar 

  12. R.H. James, P. Bousquet, I. Bussmann, M. Haeckel, R. Kipfer, I. Leifer, H. Niemann, I. Ostrovsky, J. Piskozub, G. Rehder, T. Treude, Limnol. Oceanogr. 61, S283–S299 (2016)

    Article  ADS  Google Scholar 

  13. C. Hope, K. Schaefer, Nat. Clim. Change 6, 56–59 (2016)

    Article  ADS  Google Scholar 

  14. J.H. van der Waals, J.C. Platteeuw, Adv. Chem. Phys. 2, 1–57 (1959)

    Google Scholar 

  15. A.L. Ballard, E.D. Sloan Jr., Fluid Phase Equilib. 194, 371–383 (2002)

    Article  Google Scholar 

  16. O. Kunz, W. Wagner, J. Chem. Eng. Data 57, 3032–3091 (2012)

    Article  Google Scholar 

  17. J. Gernert, R. Span, J. Chem. Thermodyn. 93, 274–293 (2016)

    Article  Google Scholar 

  18. Calsep, Method documentation PVTsim 20, Calsep product (2011)

  19. Infochem, User guide for multiflash models and physical properties (Infochem Computer Services Ltd., London, 2015)

    Google Scholar 

  20. A.L. Ballard, E.D. Sloan, Fluid Phase Equilib. 218, 15–31 (2004)

    Article  Google Scholar 

  21. http://hydrates.mines.edu/CHR/Software_files/CSMHyd.zip. (1998)

  22. S. Arrhenius, Z. Phys. Chem. 4, 96–116 (1889)

    Google Scholar 

  23. M.C. Clapeyron, Journal de l’École polytechnique 23, 153–190 (1834)

    Google Scholar 

  24. R. Clausius, Ann. Phys. 155, 368–397 (1850)

    Article  Google Scholar 

  25. O.L. Roberts, E.R. Brownscombe, L.S. Howe, Oil Gas J. 39, 37–43 (1940)

    Google Scholar 

  26. W.M. Deaton, E.M. Frost, Gas Hydrates and Their Relation to the Operation of Natural-Gas Pipe Lines, vol. 8, Monograph (United States Bureau of Mines, American Gas Association, Washington, 1946)

    Google Scholar 

  27. A.H. Delsemme, A. Wenger, Planet. Space Sci. 18, 709–715 (1970)

    Article  ADS  Google Scholar 

  28. B.J. Falabella, M. Vanpee, Ind. Eng. Chem. Fundam. 13, 228–231 (1974)

    Article  Google Scholar 

  29. T.Y. Makogon, E.D. Sloan Jr., J. Chem. Eng. Data 39, 351–353 (1994)

    Article  Google Scholar 

  30. S.O. Yang, Measurements and predictions of phase equilibria for water + natural gas components in hydrate-forming conditions. Ph.D. Dissertation, Korea University (2000)

  31. A. Hachikubo, A. Miyamoto, K. Hyakutake, K. Abe, H. Shoji, in: Y.H. Mori (ed.), Proceedings of Fourth International Conference on Gas Hydrates, Yokohama (2002)

  32. K. Yasuda, R. Ohmura, J. Chem. Eng. Data 53, 2182–2188 (2008)

    Article  Google Scholar 

  33. A.H. Mohammadi, D. Richon, Ind. Eng. Chem. Res. 49, 3976–3979 (2010)

    Article  Google Scholar 

  34. N. Fray, U. Marboeuf, O. Brissaud, B. Schmitt, J. Chem. Eng. Data 55, 5101–5108 (2010)

    Article  Google Scholar 

  35. H.D. Nagashima, R. Ohmura, J. Chem. Thermodyn. 102, 252–256 (2016)

    Article  Google Scholar 

  36. V.A. Istomin, V.G. Kwon, V.A. Durov, Gas Ind. Rus. 4, 13–15 (2006)

    Google Scholar 

  37. V.P. Melnikov, A.N. Nesterov, A.M. Reshetnikov, A.G. Zavodovsky, Chem. Eng. Sci. 64, 1160–1166 (2009)

    Article  Google Scholar 

  38. S.D. Larson, Phase studies of the two-component carbon dioxide-water system, involving the carbon dioxide hydrate. Ph.D. Dissertation, University of Illinois (1955)

  39. S.L. Miller, W.D. Smythe, Science 170, 531–533 (1970)

    Article  ADS  Google Scholar 

  40. A.W. Adamson, B.R. Jones, J. Colloid Interface Sci. 37, 831–835 (1971)

    Article  ADS  Google Scholar 

  41. B.J. Falabella, A study of natural gas hydrates. Ph.D. Dissertation, University of Massachusetts, 1975

  42. B. Schmitt, La surface de la glace: structure, dynamique et interactions—implications astrophysique. Ph.D. Dissertation, University of Grenoble (1986)

  43. M. Wendland, H. Hasse, G. Maurer, J. Chem. Eng. Data 44, 901–906 (1999)

    Article  Google Scholar 

  44. A.H. Mohammadi, D. Richon, J. Chem. Eng. Data 54, 279–281 (2009)

    Article  Google Scholar 

  45. H.D. Nagashima, N. Fukushima, R. Ohmura, Fluid Phase Equilib. 413, 53–56 (2016)

    Article  Google Scholar 

  46. V.P. Melnikov, A.N. Nesterov, A.M. Reshetnikov, V.A. Istomin, Chem. Eng. Sci. 66, 73–77 (2010)

    Article  Google Scholar 

  47. Y. Nema, R. Ohmura, I. Senaha, K. Yasuda, Fluid Phase Equilib. 441, 49–53 (2017)

    Article  Google Scholar 

  48. G.J. Chen, T.M. Guo, Chem. Eng. J. 71, 145–151 (1998)

    Article  Google Scholar 

  49. I. Langmuir, J. Am. Chem. Soc. 30, 1361–1403 (1918)

    Article  Google Scholar 

  50. I.V. Yakoumis, G.M. Kontogeorgis, E.C. Voutsas, E.M. Hendriks, D.P. Tassios, Ind. Eng. Chem. Res. 37, 4175–4182 (1998)

    Article  Google Scholar 

  51. A. Martín, J. Phys. Chem. B 114, 9602–9607 (2010)

    Article  Google Scholar 

  52. A. Asiaee, S. Raeissi, A. Shariati, J. Chem. Thermodyn. 43, 822–827 (2011)

    Article  Google Scholar 

  53. I.N. Tsimpanogiannis, N.I. Papadimitriou, A.K. Stubos, Mol. Phys. 110, 1213–1221 (2012)

    Article  ADS  Google Scholar 

  54. W.R. Parrish, J.M. Prausnitz, Ind. Eng. Chem. Proc. Des. Dev. 11, 26–35 (1972)

    Article  Google Scholar 

  55. G.D. Holder, G. Corbin, K.D. Papadopoulos, Ind. Eng. Chem. Fundam. 19, 282–286 (1980)

    Article  Google Scholar 

  56. J.B. Klauda, S.I. Sandler, Ind. Eng. Chem. Res. 39, 3377–3386 (2000)

    Article  Google Scholar 

  57. S.Y. Lee, G.D. Holder, AIChE J. 48, 161–167 (2002)

    Article  Google Scholar 

  58. J.B. Klauda, S.I. Sandler, Chem. Eng. Sci. 58, 27–41 (2003)

    Article  Google Scholar 

  59. A.A. Bandyopadhyay, J.B. Klauda, Ind. Eng. Chem. Res. 50, 148–157 (2011)

    Article  Google Scholar 

  60. G. Soave, Chem. Eng. Sci. 27, 1197–1203 (1972)

    Article  Google Scholar 

  61. V. Vinš, A. Jäger, J. Hrubý, R. Span, Fluid Phase Equilib. 435, 104–117 (2017)

    Article  Google Scholar 

  62. G.K. Anderson, J. Chem. Thermodyn. 36, 1119–1127 (2004)

    Article  Google Scholar 

  63. G.K. Anderson, J. Chem. Thermodyn. 35, 1171–1183 (2003)

    Article  Google Scholar 

  64. G. Armstrong, Nat. Chem. 2, 256 (2010)

    Article  Google Scholar 

  65. M.S. Selim, E.D. Sloan, AIChE J. 35, 1049–1052 (1989)

    Article  Google Scholar 

  66. A. Jarrahian, E. Heidaryan, J. Nat. Gas Sci. Eng. 20, 50–57 (2014)

    Article  Google Scholar 

  67. E. Heidaryan, A. Jarrahian, Can. J. Chem. Eng. 91, 1183–1189 (2013)

    Article  Google Scholar 

  68. H.-J. Ng, D.B. Robinson, AIChE J. 23, 477–482 (1977)

    Article  Google Scholar 

  69. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST reference fluid thermodynamic and transport properties—REFPROP 9.1 (2013)

  70. R. Span, T. Eckermann, S. Herrig, S. Hielscher, A. Jäger, M. Thol, Thermodynamic reference and engineering data—TREND 3.0 (2016)

  71. U. Setzmann, W. Wagner, J. Phys. Chem. Ref. Data 20, 1061–1155 (1991)

    Article  ADS  Google Scholar 

  72. R. Span, W. Wagner, J. Phys. Chem. Ref. Data 25, 1509–1596 (1996)

    Article  ADS  Google Scholar 

  73. J.H. Yoon, Y. Yamamoto, T. Komai, H. Haneda, T. Kawamura, Ind. Eng. Chem. Res. 42, 1111–1114 (2003)

    Article  Google Scholar 

  74. Y.P. Handa, J. Chem. Thermodyn. 18, 915–921 (1986)

    Article  Google Scholar 

  75. D. Avlonitis, AIChE J. 51, 258–1273 (2005)

    Article  Google Scholar 

  76. M.B. Rydzy, J.M. Schicks, R. Naumann, J. Erzinger, J. Phys. Chem. B 111, 9539–9545 (2007)

    Article  Google Scholar 

  77. R. Feistel, W. Wagner, J. Phys. Chem. Ref. Data 35, 1021–1047 (2006)

    Article  ADS  Google Scholar 

  78. A. Gupta, J. Lachance, E.D. Sloan, C.A. Koh, Chem. Eng. Sci. 63, 5848–5853 (2008)

    Article  Google Scholar 

  79. T. Uchida, Waste Manage. 17, 343–352 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support of FAPESP (processes 2014/02140-7, 2014/25740-0, 2016/09341-3 and 2017/22589-7) and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Heidaryan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidaryan, E., Robustillo Fuentes, M.D. & Pessôa Filho, P.d.A. Equilibrium of Methane and Carbon Dioxide Hydrates Below the Freezing Point of Water: Literature Review and Modeling. J Low Temp Phys 194, 27–45 (2019). https://doi.org/10.1007/s10909-018-2049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2049-2

Keywords

Navigation