Skip to main content
Log in

The Cryogenic AntiCoincidence Detector for ATHENA X-IFU: Assessing the Role of the Athermal Phonons Collectors in the AC-S8 Prototype

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The ATHENA X-ray observatory is the second large-class mission in the ESA Cosmic Vision 2015–2025 science programme. One of the two on-board instruments is the X-IFU, an imaging spectrometer based on a large array of TES microcalorimeters. To reduce the particle-induced background, the spectrometer works in combination with a cryogenic anticoincidence detector (CryoAC), placed less than 1 mm below the TES array. The last CryoAC single-pixel prototypes, namely AC-S7 and AC-S8, are based on large-area (1 \(\hbox {cm}^2\)) silicon absorbers sensed by 65 parallel-connected iridium TES. This design has been adopted to improve the response generated by the athermal phonons, which will be used as fast anticoincidence flag. The latter sample is featured also with a network of aluminum fingers directly connected to the TES, designed to further improve the athermals collection efficiency. In this paper, we will report the main results obtained with AC-S8, showing that the additional fingers network is able to increase the energy collected from the athermal part of the pulses (from the 6% of AC-S7 up to the 26 % with AC-S8). Furthermore, the finger design is able to prevent the quasiparticle recombination in the aluminum, assuring a fast pulse rising front (L/R limited). In our road map, the AC-S8 prototype is the last step before the development of the CryoAC demonstration model, which will be the detector able to demonstrate the critical technologies expected in the CryoAC development programme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Nandra, X. Barcons, D. Barret, A. Fabian, J.W. den Herder, L. Piro, M. Watson et al., in ATHENA Mission Proposal (2013), http://www.the-athena-x-ray-observatory.eu/AthenaPapers/The_Athena_Mission_Proposal.pdf. Accessed 01 June 2017

  2. K. Nandra, X. Barcons, D. Barret, A. Fabian, J.W. den Herder, L. Piro, M. Watson et al., in ATHENA White Paper (2013), http://www.the-athena-x-ray-observatory.eu/AthenaPapers/The_Hot_and_Energetic_Universe.pdf. Accessed 16 Oct 2017

  3. F. Pajot, D. Barret, T. Lam-Trong et al., J. Low Temp. Phys. in this Special Issue LTD17 (2018). https://doi.org/10.1007/s10909-018-1904-5

  4. S. Lotti, T. Mineo, C. Jacquey, S. Molendi, M. D’Andrea, C. Macculi, L. Piro, Exp. Astron. (2017). https://doi.org/10.1007/s10686-017-9538-1

    Article  ADS  Google Scholar 

  5. C. Macculi, A. Argan, M. D’Andrea, S. Lotti, M. Laurenza et al., Proc. SPIE 9905, 99052K (2016). https://doi.org/10.1117/12.2231298

    Article  Google Scholar 

  6. C. Macculi, A. Argan, M. D’Andrea, S. Lotti, L. Piro, M. Biasotti, D. Corsini, F. Gatti, A. Orlando, G. Torrioli, J. Low Temp. Phys. (2016). https://doi.org/10.1007/s10909-015-1439-y

    Article  ADS  Google Scholar 

  7. C. Macculi, L. Piro, L. Colasanti, S. Lotti, L. Natalucci, D. Bagliani, M. Biasotti, F. Gatti, G. Torrioli, M. Barbera, T. Mineo, E. Perinati, J. Low Temp. Phys. (2014). https://doi.org/10.1007/s10909-014-1150-4

    Article  ADS  Google Scholar 

  8. M. D’Andrea, A. Argan, S. Lotti, C. Macculi, L. Piro, M. Biasotti, D. Corsini, F. Gatti, G. Torrioli, Proc. SPIE 9905, 99055X (2016). https://doi.org/10.1117/12.2231412

    Article  ADS  Google Scholar 

  9. M. Biasotti, D. Corsini, M. De Gerone, F. Gatti, C. Macculi, M. D’Andrea, L. Piro, Proc. SPIE 9905, 99055Z (2016). https://doi.org/10.1117/12.2232789

    Article  Google Scholar 

  10. S.H. Moseley, J.C. Mather, D. McCammon, J. Appl. Phys. 56, 1257 (1984). https://doi.org/10.1063/1.334129

    Article  ADS  Google Scholar 

  11. F. Probst, M. Frank, S. Cooper, P. Colling, D. Dummer, P. Ferger, G. Forster, A. Nucciotti, W. Seidel, L. Stodolsky, J. Low Temp. Phys. (1995). https://doi.org/10.1007/BF00753837

  12. G. Angloher, P. Bauer, N. Ferreiro, D. Hauff, A. Tanzke, R. Strauss, M. Kiefer, F. Petricia, F. Reindl, W. Seidel, F. Prbst, M. Wstrich, J. Low Temp. Phys. (2016). https://doi.org/10.1007/s10909-016-1512-1

    Article  ADS  Google Scholar 

  13. http://www.aperam.com/alloysandspecialities/fileadmin/pdf/Aperam/Brochure/CRYOPHY_R_.pdf. Accessed 22 May 2018

  14. C. Macculi, L. Colasanti, S. Lotti, L. Natalucci, L. Piro, D. Bagliani, M. Biasotti, F. Gatti, G. Torrioli, M. Barbera, G. La Rosa, T. Mineo, E. Perinati, J. Low Temp. Phys. (2012). https://doi.org/10.1007/s10909-012-0504-z

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by ASI (Italian Space Agency) through the Contract No. 2015-046-R.0, and by ESA (European Space Agency) through the Contract No. 4000114932/15/NL/BW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D’Andrea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Andrea, M., Macculi, C., Argan, A. et al. The Cryogenic AntiCoincidence Detector for ATHENA X-IFU: Assessing the Role of the Athermal Phonons Collectors in the AC-S8 Prototype. J Low Temp Phys 193, 949–957 (2018). https://doi.org/10.1007/s10909-018-2039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2039-4

Keywords

Navigation