Abstract
The ATHENA X-ray observatory is the second large-class mission in the ESA Cosmic Vision 2015–2025 science programme. One of the two on-board instruments is the X-IFU, an imaging spectrometer based on a large array of TES microcalorimeters. To reduce the particle-induced background, the spectrometer works in combination with a cryogenic anticoincidence detector (CryoAC), placed less than 1 mm below the TES array. The last CryoAC single-pixel prototypes, namely AC-S7 and AC-S8, are based on large-area (1 \(\hbox {cm}^2\)) silicon absorbers sensed by 65 parallel-connected iridium TES. This design has been adopted to improve the response generated by the athermal phonons, which will be used as fast anticoincidence flag. The latter sample is featured also with a network of aluminum fingers directly connected to the TES, designed to further improve the athermals collection efficiency. In this paper, we will report the main results obtained with AC-S8, showing that the additional fingers network is able to increase the energy collected from the athermal part of the pulses (from the 6% of AC-S7 up to the 26 % with AC-S8). Furthermore, the finger design is able to prevent the quasiparticle recombination in the aluminum, assuring a fast pulse rising front (L/R limited). In our road map, the AC-S8 prototype is the last step before the development of the CryoAC demonstration model, which will be the detector able to demonstrate the critical technologies expected in the CryoAC development programme.
Similar content being viewed by others
References
K. Nandra, X. Barcons, D. Barret, A. Fabian, J.W. den Herder, L. Piro, M. Watson et al., in ATHENA Mission Proposal (2013), http://www.the-athena-x-ray-observatory.eu/AthenaPapers/The_Athena_Mission_Proposal.pdf. Accessed 01 June 2017
K. Nandra, X. Barcons, D. Barret, A. Fabian, J.W. den Herder, L. Piro, M. Watson et al., in ATHENA White Paper (2013), http://www.the-athena-x-ray-observatory.eu/AthenaPapers/The_Hot_and_Energetic_Universe.pdf. Accessed 16 Oct 2017
F. Pajot, D. Barret, T. Lam-Trong et al., J. Low Temp. Phys. in this Special Issue LTD17 (2018). https://doi.org/10.1007/s10909-018-1904-5
S. Lotti, T. Mineo, C. Jacquey, S. Molendi, M. D’Andrea, C. Macculi, L. Piro, Exp. Astron. (2017). https://doi.org/10.1007/s10686-017-9538-1
C. Macculi, A. Argan, M. D’Andrea, S. Lotti, M. Laurenza et al., Proc. SPIE 9905, 99052K (2016). https://doi.org/10.1117/12.2231298
C. Macculi, A. Argan, M. D’Andrea, S. Lotti, L. Piro, M. Biasotti, D. Corsini, F. Gatti, A. Orlando, G. Torrioli, J. Low Temp. Phys. (2016). https://doi.org/10.1007/s10909-015-1439-y
C. Macculi, L. Piro, L. Colasanti, S. Lotti, L. Natalucci, D. Bagliani, M. Biasotti, F. Gatti, G. Torrioli, M. Barbera, T. Mineo, E. Perinati, J. Low Temp. Phys. (2014). https://doi.org/10.1007/s10909-014-1150-4
M. D’Andrea, A. Argan, S. Lotti, C. Macculi, L. Piro, M. Biasotti, D. Corsini, F. Gatti, G. Torrioli, Proc. SPIE 9905, 99055X (2016). https://doi.org/10.1117/12.2231412
M. Biasotti, D. Corsini, M. De Gerone, F. Gatti, C. Macculi, M. D’Andrea, L. Piro, Proc. SPIE 9905, 99055Z (2016). https://doi.org/10.1117/12.2232789
S.H. Moseley, J.C. Mather, D. McCammon, J. Appl. Phys. 56, 1257 (1984). https://doi.org/10.1063/1.334129
F. Probst, M. Frank, S. Cooper, P. Colling, D. Dummer, P. Ferger, G. Forster, A. Nucciotti, W. Seidel, L. Stodolsky, J. Low Temp. Phys. (1995). https://doi.org/10.1007/BF00753837
G. Angloher, P. Bauer, N. Ferreiro, D. Hauff, A. Tanzke, R. Strauss, M. Kiefer, F. Petricia, F. Reindl, W. Seidel, F. Prbst, M. Wstrich, J. Low Temp. Phys. (2016). https://doi.org/10.1007/s10909-016-1512-1
http://www.aperam.com/alloysandspecialities/fileadmin/pdf/Aperam/Brochure/CRYOPHY_R_.pdf. Accessed 22 May 2018
C. Macculi, L. Colasanti, S. Lotti, L. Natalucci, L. Piro, D. Bagliani, M. Biasotti, F. Gatti, G. Torrioli, M. Barbera, G. La Rosa, T. Mineo, E. Perinati, J. Low Temp. Phys. (2012). https://doi.org/10.1007/s10909-012-0504-z
Acknowledgements
This work has been partially supported by ASI (Italian Space Agency) through the Contract No. 2015-046-R.0, and by ESA (European Space Agency) through the Contract No. 4000114932/15/NL/BW.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
D’Andrea, M., Macculi, C., Argan, A. et al. The Cryogenic AntiCoincidence Detector for ATHENA X-IFU: Assessing the Role of the Athermal Phonons Collectors in the AC-S8 Prototype. J Low Temp Phys 193, 949–957 (2018). https://doi.org/10.1007/s10909-018-2039-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10909-018-2039-4