Skip to main content
Log in

Advanced ACTPol TES Device Parameters and Noise Performance in Fielded Arrays

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Advanced ACTPol (AdvACT) upgrade to the Atacama Cosmology Telescope (ACT) features arrays of aluminum manganese transition-edge sensors (TESes) optimized for ground-based observations of the cosmic microwave background (CMB). Array testing shows highly responsive detectors with anticipated in-band noise performance under optical loading. We report on TES parameters measured with impedance data taken on a subset of TESes. We then compare modeled noise spectral densities to measurements. We find excess noise at frequencies around 100 Hz, nearly outside of the signal band of CMB measurements. In addition, we describe full-array noise measurements in the laboratory and in the field for two new AdvACT mid-frequency arrays, sensitive at bands centered on 90 and 150 GHz, and data for the high-frequency array (150/230 GHz) as deployed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://www.oxford-instruments.com.

  2. https://www.lakeshore.com.

  3. http://www.cryomech.com.

  4. 225 Wildwood Ave, Woburn, MA 01801.

References

  1. R. Thornton, P.A.R. Ade, S. Aiola et al., The atacama cosmology telescope: the polarization-sensitive ACTPol instrument. Astrophys. J. Suppl. 227, 21 (2016). https://doi.org/10.3847/1538-4365/227/2/21

    Article  ADS  Google Scholar 

  2. F. De Bernardis, J.R. Stevens, M. Hasselfield et al., Survey strategy optimization for the atacama cosmology telescope. Proc. SPIE 9910, 991014 (2016). https://doi.org/10.1117/12.2232824

    Article  Google Scholar 

  3. S.W. Henderson, R. Allison, J. Austermann et al., Advanced ACTPol cryogenic detector arrays and readout. J. Low-Temp. Phys. 184, 772–779 (2016). https://doi.org/10.1007/s10909-016-1575-z

    Article  ADS  Google Scholar 

  4. S.M. Simon, J. Austermann, J.A. Beall et al., The design and characterization of wideband spline-profiled feedhorns for Advanced ACTPol. Proc. SPIE 9914, 991416 (2016). https://doi.org/10.1117/12.2233603

    Article  Google Scholar 

  5. K.D. Irwin, G.C. Hilton, Cryogenic particle detection ch. Transition Edge Sensors. (Springer, Berlin 2005), pp. 63–150. https://doi.org/10.1007/b12169.

  6. S.M. Duff, J.E. Austermann, J.A. Beall et al., Advanced ACTPol multichroic polarimeter array fabrication process for 150 mm wafers. J. Low-Temp. Phys. 184, 634–641 (2016). https://doi.org/10.1007/s10909-016-1576-y

    Article  ADS  Google Scholar 

  7. E.M. George, J.E. Austermann, J.A. Beall et al., A study of Al-Mn transition-edge sensor engineering for stability. J. Low-Temp. Phys. 176, 383–91 (2014). https://doi.org/10.1007/s10909-013-0994-3

    Article  ADS  Google Scholar 

  8. S.W. Henderson, J.R. Stevens, M. Amiri et al., Readout of two-kilopixel transition-edge sensor arrays for Advanced ACTPol. Proc. SPIE 9914, 99141G (2016). https://doi.org/10.1117/12.2233895

    Article  Google Scholar 

  9. E.S. Battistelli, M. Amiri, B. Burger et al., Functional Description of Read-out Electronics for Time-Domain Multiplexed Bolometers for Millimeter and Sub-Millimeter Astronomy. J. Low-Temp. Phys. 151, 908–14 (2008). https://doi.org/10.1007/s10909-008-9772-z

    Article  ADS  Google Scholar 

  10. S.K. Choi et al. Characterization of the mid frequency arrays for advanced ACTPol. J. Low Temp. Phys. this special issue (2018)

  11. M.A. Lindeman, K.A. Barger, D.E. Brandl et al., Complex impedance measurements of calorimeters and bolometers: Correction for stray impedances. Rev. Sci. Instrum. 78, 043105 (2007). https://doi.org/10.1063/1.2723066

    Article  ADS  Google Scholar 

  12. Y. Zhao, Characterization of transition edge sensors for the millimeter bolometer array camera on the atacama cosmology telescope. In Ph.D thesis, Princeton University, Princeton (2008)

  13. J.C. Mather, Bolometer noise: nonequilibrium theory. Appl. Opt. 21, 1125–9 (1982). https://doi.org/10.1364/AO.21.001125

    Article  ADS  Google Scholar 

  14. K.T. Crowley, S.K. Choi, J. Kuan et al., Characterization of AlMn TES impedance, noise, and optical efficiency in the first 150 mm multichroic array for Advanced ACTPol. Proc. SPIE 9914, 991431 (2016). https://doi.org/10.1117/12.2231999

    Article  Google Scholar 

  15. N. Jethava, J.N. Ullom, K.D. Irwin et al., Dependence of excess noise on the partial derivatives of resistance in superconducting transition edge sensors. AIP Conf. Proc. 1185, 31–33 (2009). https://doi.org/10.1063/1.3292343

    Article  ADS  Google Scholar 

  16. J.M. Lamarre, Photon noise in photometric instruments at far-infrared and submillimeter wavelengths. Appl. Opt. 25, 870–6 (1986). https://doi.org/10.1364/AO.25.000870

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation through award 1440226. The development of multichroic detectors and lenses was supported by NASA grants NNX13AE56G and NNX14AB58G. The work of KTC and BJK was supported by NASA Space Technology Research Fellowship awards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin T. Crowley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crowley, K.T., Austermann, J.E., Choi, S.K. et al. Advanced ACTPol TES Device Parameters and Noise Performance in Fielded Arrays. J Low Temp Phys 193, 328–336 (2018). https://doi.org/10.1007/s10909-018-2028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2028-7

Keywords

Navigation