SPT-3G: A Multichroic Receiver for the South Pole Telescope


A new receiver for the South Pole Telescope, SPT-3G, was deployed in early 2017 to map the cosmic microwave background at 95, 150, and 220 GHz with \(\sim \) 16,000 detectors, 10 times more than its predecessor SPTpol. The increase in detector count is made possible by lenslet-coupled trichroic polarization-sensitive pixels fabricated at Argonne National Laboratory, new 68\(\times \) frequency-domain multiplexing readout electronics, and a higher-throughput optical design. The enhanced sensitivity of SPT-3G will enable a wide range of results including constraints on primordial B-mode polarization, measurements of gravitational lensing of the CMB, and a galaxy cluster survey. Here we present an overview of the instrument and its science objectives, highlighting its measured performance and plans for the upcoming 2018 observing season.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    U. Seljak, M. Zaldarriaga, Phys. Rev. Lett. 78, 2054–2057 (1997)

    ADS  Article  Google Scholar 

  2. 2.

    M. Kamionkowski, A. Kosowsky, A. Stebbins, Phys. Rev. Lett. 78, 2058–2061 (1997)

    ADS  Article  Google Scholar 

  3. 3.

    K.N. Abazajian et al., Astropart. Phys. 63, 55–65 (2015)

    ADS  Article  Google Scholar 

  4. 4.

    W. Hu, T. Okamoto, Astrophys. J. 574, 566–574 (2002)

    ADS  Article  Google Scholar 

  5. 5.

    A. Lewis, A. Challinor, Phys. Rept. 429, 1–65 (2006)

    ADS  Article  Google Scholar 

  6. 6.

    K.N. Abazajian et al., Astropart. Phys. 63, 66–80 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    A.T. Crites et al., Astrophys. J. 805(1), 36 (2015)

    ADS  Article  Google Scholar 

  8. 8.

    R.J. Thornton et al., Astrophys. J. Suppl. 227(2), 21 (2016)

    ADS  Article  Google Scholar 

  9. 9.

    Z. Kermish et al., Proc. SPIE Int. Soc. Opt. Eng. 8452, 1C (2012)

    Google Scholar 

  10. 10.

    B.A. Benson et al., Proc. SPIE Int. Soc. Opt. Eng. 9153, 91531P (2014)

    Google Scholar 

  11. 11.

    G. Simard, D. Hanson, G. Holder, Astrophys. J. 807(2), 166 (2015)

    ADS  Article  Google Scholar 

  12. 12.

    A. Manzotti et al., Astrophys. J. 846, 1 (2017)

    Article  Google Scholar 

  13. 13.

    R. Adam et al., Astron. Astrophys. 594, A1 (2016)

    Article  Google Scholar 

  14. 14.

    K.S. Dawson et al., Astron. J. 145, 10 (2013)

    ADS  Article  Google Scholar 

  15. 15.

    B. Flaugher et al., Astron. J. 150, 150 (2015)

    ADS  Article  Google Scholar 

  16. 16.

    R. O’Brient et al., Appl. Phys. Lett. 102, 063506 (2013)

    ADS  Article  Google Scholar 

  17. 17.

    C.M. Posada et al., Proc. SPIE 9914, 9914 (2016)

    Google Scholar 

  18. 18.

    J. Ding et al., IEEE Trans. Appl. Supercond. 27(4), 2100204 (2017)

    Article  Google Scholar 

  19. 19.

    W. B. Everett et al., J. Low Temp. Phys., this Special Issue LTD-17 PE-10 (2018)

  20. 20.

    F.W. Carter et al., J. Low. Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1910-7

    Article  Google Scholar 

  21. 21.

    R. Bhatia et al., Cryogenics 40.11 (2000), 685-691. ISSN: 0011-2275

  22. 22.

    J. Ding et al., J. Low. Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1907-2

    Article  Google Scholar 

  23. 23.

    C.M. Posada et al., J. Low. Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1924-1

    Article  Google Scholar 

  24. 24.

    Z. Pan et al., J. Low. Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1935-y

    Article  Google Scholar 

  25. 25.

    J.S. Avva et al., J. Low. Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1965-5

    Article  Google Scholar 

  26. 26.

    K. Rotermund et al., J. Low. Temp. Phys. 184(1–2), 486–491 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    T. de Haan, G. Smecher, M. Dobbs, Proc. SPIE Int. Soc. Opt. Eng. 8452, 84520E (2012)

    Google Scholar 

  28. 28.

    A.N. Bender et al., Proc. SPIE Int. Soc. Opt. Eng. 9914, 99141D (2016)

    Google Scholar 

  29. 29.

    M.E. Huber et al., IEEE Trans. Appl. Supercond. 11(1), 1251 (2001)

    ADS  Article  Google Scholar 

  30. 30.

    E.M. George et al., Proc. SPIE Int. Soc. Opt. Eng. 8452, 84521F (2012)

    Google Scholar 

  31. 31.

    O. Jeong et al., J. Low Temp. Phys. 184(3–4), 621–626 (2016)

    ADS  Article  Google Scholar 

Download references


The South Pole Telescope is supported by the National Science Foundation (NSF) through Grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center Grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, and the Kavli Foundation and the Gordon and Betty Moore Foundation Grant GBMF 947. Work at Argonne National Laboratory, including Laboratory Directed Research and Development support and Use of the Center for Nanoscale Materials, a US Department of Energy, Office of Science (DOE-OS) user facility, was supported under Contract No. DE-AC02-06CH11357. We acknowledge R. Divan, L. Stan, C.S. Miller, and V. Kutepova for supporting our work in the Argonne Center for Nanoscale Materials. Work at Fermi National Accelerator Laboratory, a DOE-OS, HEP User Facility managed by the Fermi Research Alliance, LLC, was supported under Contract No. DE-AC02-07CH11359. NWH acknowledges support from NSF CAREER Grant AST-0956135. The McGill authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, and Canada Research Chairs program.

Author information



Corresponding author

Correspondence to A. J. Anderson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anderson, A.J., Ade, P.A.R., Ahmed, Z. et al. SPT-3G: A Multichroic Receiver for the South Pole Telescope. J Low Temp Phys 193, 1057–1065 (2018). https://doi.org/10.1007/s10909-018-2007-z

Download citation


  • CMB
  • Instrumentation
  • Polarimetry
  • SPT-3G