Skip to main content
Log in

A Model on Heat Signal of Crystal Detector at Low Temperature

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present a model to calculate heat signal shapes from low-temperature bolometer attached to a crystal. This model is based on the elementary acoustic wave theory at low temperature and has been developed using modern Monte Carlo techniques. Physical processes in phonon propagation, such as transmission, scattering and reflection are considered. Using our model, the calculated time dependence of signal agrees with real experimental data. This model has applications in low-temperature rare event particle detectors for dark matter and neutrinos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H.J. Maris, J. Low Temp. Phys. 93, 355 (1993)

    Article  ADS  Google Scholar 

  2. D. Brandt, M. Asai, P.L. Brink et al., J. Low Temp. Phys. 167, 485 (2012)

    Article  ADS  Google Scholar 

  3. S.W. Leman, Rev. Sci. Instrum. 83, 091101 (2012)

    Article  ADS  Google Scholar 

  4. O. Weis, Z. Angew, Physik 26, 325 (1969)

    Google Scholar 

  5. F. Rösch, O. Weis, Z. Phys. B 27, 33 (1977)

    Article  ADS  Google Scholar 

  6. R. Bayrle, O. Weis, J. Low Temp. Phys. 76, 129 (1989)

    Article  ADS  Google Scholar 

  7. G. Müller, O. Weis, Z. Phys. B 80, 25 (1990)

    Article  ADS  Google Scholar 

  8. O. Weis, Z. Phys. B 34, 55 (1979)

    Article  ADS  Google Scholar 

  9. J.P. Wolfe, Imaging Phonons (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  10. O. Weis, Z. Phys. B 96, 525 (1995)

    Article  ADS  Google Scholar 

  11. F.I. Fedorov, Theory of Elastic Waves in Crystals, Ch. 8, Plenum, New York, 1968

    Book  Google Scholar 

  12. M. Goetze, M. Nover, O. Weis, Z. Phys. B 25, 1 (1976)

    Article  ADS  Google Scholar 

  13. A. Mrzyglod, O. Weis, J. Low Temp. Phys. 97, 275 (1994)

    Article  ADS  Google Scholar 

  14. P. Taborek, D. Goodstein, Phys. Rev. B 22, 1550 (1980)

    Article  ADS  Google Scholar 

  15. A. Mrzyglod, O. Weis, Z. Phys. B 97, 103–112 (1995)

    Article  ADS  Google Scholar 

  16. T.L. Head, M.E. Msall, Chin. J. Phys. 49, 278 (2011)

    Google Scholar 

  17. A.G. Every, G.L. Koos, J.P. Wolfe, Phys. Rev. B 29, 2190 (1984)

    Article  ADS  Google Scholar 

  18. P. Taborek, D. Goodstein, J. Phys. C 12, 4737 (1979)

    Article  ADS  Google Scholar 

  19. G. Müller, O. Weis, Z. Phys. B 80, 15 (1990)

    Article  ADS  Google Scholar 

  20. G. B. Kim, S. Choi, F. A. Danevich, et al. Adv. High Energy Phys. 2015, Article ID 817530, 7 pages, 2015

  21. G. Angloher et al. [CRESST Collaboration], Eur. Phys. J. C 76(1), 25 (2016)

Download references

Acknowledgements

The author would like to thank Yonghamb Kim, Juhee Lee, Chang Lee and Seungyoon Oh for useful communications. This work was supported by Project Code IBS-R016-D1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Kim, I. A Model on Heat Signal of Crystal Detector at Low Temperature. J Low Temp Phys 193, 393–401 (2018). https://doi.org/10.1007/s10909-018-2003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2003-3

Keywords

Navigation