Skip to main content
Log in

First Calorimetric Measurement of Electron Capture in \({}^{193}\)Pt with a Transition-Edge Sensor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The neutrino mass can be extracted from a high statistics, high resolution calorimetric spectrum of electron capture in \({}^{163}\)Ho. In order to better understand the shape of the calorimetric electron capture spectrum, a second isotope was measured with a close to ideal absorber-source configuration. \({}^{193}\)Pt was created by irradiating a \({}^{192}\)Pt-enriched platinum foil in a nuclear reactor. This Pt-in-Pt absorber was designed to have a nearly ideal absorber-source configuration. The measured \({}^{193}\)Pt calorimetric electron capture spectrum provides an independent check on the corresponding theoretical calculations, which have thus far been compared only for \({}^{163}\)Ho. The first experimental and theoretically calculated spectra from this \({}^{193}\)Pt-in-Pt absorber are presented and overlaid for preliminary comparison of theory with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. An experimental measurement of the cross section at the single energy of 0.025 eV yielded \(10\pm 2.5\) barns [24].

References

  1. A. Nucciotti, Adv. High Energy Phys. 2016, 1–41 (2016). https://doi.org/10.1155/2016/9153024

    Article  Google Scholar 

  2. C. Hassel, K. Blaum, T.D. Goodacre, H. Dorrer, C.E. Düllmann, K. Eberhardt, S. Eliseev, C. Enss, P. Filianin, A. Fäßler, A. Fleischmann, L. Gastaldo, M. Goncharov, D. Hengstler, J. Jochum, K. Johnston, M. Keller, S. Kempf, T. Kieck, U. Köster, M. Krantz, B. Marsh, C. Mokry, Y.N. Novikov, P.C. Ranitzsch, S. Rothe, A. Rischka, J. Runke, A. Saenz, F. Schneider, S. Scholl, R.X. Schüssler, F. Simkovic, T. Stora, P. Thörle-Pospiech, A. Türler, M. Veinhard, M. Wegner, K. Wendt, K. Zuber, J. Low Temp. Phys. 184(3–4), 910–921 (2016). https://doi.org/10.1007/s10909-016-1541-9

    Article  ADS  Google Scholar 

  3. M. Faverzani, B. Alpert, D. Backer, D. Bennet, M. Biasotti, C. Brofferio, V. Ceriale, G. Ceruti, D. Corsini, P.K. Day, M. De Gerone, R. Dressler, E. Ferri, J. Fowler, E. Fumagalli, J. Gard, F. Gatti, A. Giachero, J. Hays-Wehle, S. Heinitz, G. Hilton, U. Köster, M. Lusignoli, M. Maino, J. Mates, S. Nisi, R. Nizzolo, A. Nucciotti, A. Orlando, L. Parodi, G. Pessina, G. Pizzigoni, A. Puiu, S. Ragazzi, C. Reintsema, M. Ribeiro-Gomez, D. Schmidt, D. Schuman, F. Siccardi, M. Sisti, D. Swetz, F. Terranova, J. Ullom, L. Vale, J. Low Temp. Phys. 184(3–4), 922–929 (2016). https://doi.org/10.1007/s10909-016-1540-x

    Article  ADS  Google Scholar 

  4. M.P. Croce, M.W. Rabin, V. Mocko, G.J. Kunde, E.R. Birnbaum, E.M. Bond, J.W. Engle, A.S. Hoover, F.M. Nortier, A.D. Pollington, W.A. Taylor, N.R. Weisse-Bernstein, L.E. Wolfsberg, J.P. Hays-Wehle, D.R. Schmidt, D.S. Swetz, J.N. Ullom, T.E. Barnhart, R.J. Nickles, J. Low Temp. Phys. 184(3–4), 958–968 (2016). https://doi.org/10.1007/s10909-015-1451-2

    Article  ADS  Google Scholar 

  5. H. Rotzinger, M. Linck, A. Burck, M. Rodrigues, M. Loidl, E. Leblanc, L. Fleischmann, A. Fleischmann, C. Enss, J. Low Temp. Phys. 151(3–4), 1087–1093 (2008). https://doi.org/10.1007/s10909-008-9787-5

    Article  ADS  Google Scholar 

  6. M. Loidl, E. Leblanc, M. Rodrigues, T. Branger, D. Lacour, J. Bouchard, B. Censier, Appl. Radiat. Isot. 66(6–7), 872–876 (2008). https://doi.org/10.1016/J.APRADISO.2008.02.027

    Article  Google Scholar 

  7. M. Loidl, M. Rodrigues, B. Censier, S. Kowalski, X. Mougeot, P. Cassette, T. Branger, D. Lacour, Appl. Radiat. Isot. 68(7–8), 1454–1458 (2010). https://doi.org/10.1016/J.APRADISO.2009.11.054

    Article  Google Scholar 

  8. M. Loidl, M. Rodrigues, R. Mariam, Appl. Radiat. Isot. (2017). https://doi.org/10.1016/j.apradiso.2017.10.042

    Article  Google Scholar 

  9. M. Shamsuzzoha-Basunia, Nucl. Data Sheets 143, 1–381 (2017). https://doi.org/10.1016/J.NDS.2017.08.001

    Article  ADS  Google Scholar 

  10. A. De Rújula, 3 (2013). arxiv:1305.4857

  11. A. Faessler, L. Gastaldo, F. Šimkovic, J. Phys. G Nucl. Part. Phys. 42(1), 015108 (2015). https://doi.org/10.1088/0954-3899/42/1/015108

    Article  ADS  Google Scholar 

  12. R.G.H. Robertson, Phys. Rev. C - Nucl. Phys. 91(3), 1–6 (2015). https://doi.org/10.1103/PhysRevC.91.035504

    Article  Google Scholar 

  13. A. Faessler, F. Šimkovic, Phys. Rev. C 91(4), 045505 (2015). https://doi.org/10.1103/PhysRevC.91.045505

    Article  ADS  Google Scholar 

  14. A. Faessler, C. Enss, L. Gastaldo, F. Simkovic, Phys. Rev. C 064302, 1–6 (2015). https://doi.org/10.1103/PhysRevC.91.064302

    Article  Google Scholar 

  15. A. De Rújula, M. Lusignoli, pp. 1–6 (2015). arxiv:1510.05462

  16. A. De Rújula, M. Lusignoli, J. High Energy Phys. 2016(5), 15 (2016). https://doi.org/10.1007/JHEP05(2016)015

    Article  Google Scholar 

  17. A. Faessler, L. Gastaldo, F. Simkovic, A.D. Morgenstelle, pp 1–21 (2016)

  18. A. Faessler, L. Gastaldo, F. Šimkovic, Phys. Rev. C 95(4), 045502 (2017). https://doi.org/10.1103/PhysRevC.95.045502

    Article  ADS  Google Scholar 

  19. A. De Rújula, Nucl. Phys. B 188(3), 414–458 (1981). https://doi.org/10.1016/0550-3213(81)90002-X

    Article  ADS  Google Scholar 

  20. B. Jonson, J.U. Andersen, G. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.H. Gustafsson, P. Hansen, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn, Nucl. Phys. A 396, 479–493 (1983). https://doi.org/10.1016/0375-9474(83)90040-4

    Article  ADS  Google Scholar 

  21. L. Gastaldo, K. Blaum, A. Doerr, C.E. Düllmann, K. Eberhardt, S. Eliseev, C. Enss, A. Faessler, A. Fleischmann, S. Kempf, M. Krivoruchenko, S. Lahiri, M. Maiti, Y.N. Novikov, P.C.O. Ranitzsch, F. Simkovic, Z. Szusc, M. Wegner, J. Low Temp. Phys. 176(5–6), 876–884 (2014). https://doi.org/10.1007/s10909-014-1187-4

    Article  ADS  Google Scholar 

  22. B. Alpert, M. Balata, D. Bennett, M. Biasotti, C. Boragno, C. Brofferio, V. Ceriale, D. Corsini, K.P. Day, M. De Gerone, R. Dressler, M. Faverzani, E. Ferri, J. Fowler, F. Gatti, A. Giachero, J. Hays-Wehle, S. Heinitz, G. Hilton, U. Köster, M. Lusignoli, M. Maino, J. Mates, S. Nisi, R. Nizzolo, A. Nucciotti, G. Pessina, G. Pizzigoni, A. Puiu, S. Ragazzi, C. Reintsema, M.R. Gomes, D. Schmidt, D. Schumann, M. Sisti, D. Swetz, F. Terranova, J. Ullom, P.K. Day, M. De Gerone, R. Dressler, M. Faverzani, E. Ferri, J. Fowler, F. Gatti, A. Giachero, J. Hays-Wehle, S. Heinitz, G. Hilton, U. Köster, M. Lusignoli, M. Maino, J. Mates, S. Nisi, R. Nizzolo, A. Nucciotti, G. Pessina, G. Pizzigoni, A. Puiu, S. Ragazzi, C. Reintsema, M.R. Gomes, D. Schmidt, D. Schumann, M. Sisti, D. Swetz, F. Terranova, J. Ullom, Eur. Phys. J. C 75(3), 1–11 (2015). https://doi.org/10.1140/epjc/s10052-015-3329-5

    Article  ADS  Google Scholar 

  23. Pt-192 Assay—Batch 186140. Technical report, Oak Ridge National Laboratory (2016)

  24. V.P. Vertebnyi, P.N. Vorona, A.I. Kalchenko, V.A. Pshenichnyi, V.K. Rudishin, Yad. Fiz. 22, 674 (1975)

    Google Scholar 

  25. E. Fermi, Il Nuovo Cimento 11(1), 1–19 (1934). https://doi.org/10.1007/BF02959820

    Article  ADS  Google Scholar 

  26. A. De Rújula, M. Lusignoli, Phys. Lett. B 118(4), 429–434 (1982). https://doi.org/10.1016/0370-2693(82)90218-0

    Article  ADS  Google Scholar 

  27. J. Campbell, T. Papp, At. Data Nucl. Data Tables 77(1), 1–56 (2001). https://doi.org/10.1006/adnd.2000.0848

    Article  ADS  Google Scholar 

  28. W.M. Haynes (ed.), CRC Handbook of Chemistry and Physics, 97th edn. (CRC Press, Boca Raton, 2016)

    Google Scholar 

  29. I. Band, M. Trzhaskovskaya, At. Data Nucl. Data Tables 35(1), 1–13 (1986). https://doi.org/10.1016/0092-640X(86)90027-6

    Article  ADS  Google Scholar 

  30. C.J. Fontes, H.L. Zhang, J. Abdallah Jr., R.E.H. Clark, D.P. Kilcrease, J. Colgan, R.T. Cunningham, P. Hakel, N.H. Magee, M.E. Sherrill, J. Phys. B At. Mol. Opt. Phys. 48(14), 144014 (2015). https://doi.org/10.1088/0953-4075/48/14/144014

    Article  ADS  Google Scholar 

  31. I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99(1), 69–95 (2013). https://doi.org/10.1016/j.adt.2011.12.006

    Article  ADS  Google Scholar 

  32. P.T. Springer, C.L. Bennett, P.A. Baisden, Phys. Rev. A 31(3), 1965–1967 (1985). https://doi.org/10.1103/PhysRevA.31.1965

    Article  ADS  Google Scholar 

  33. R.G.H. Robertson, Nucl. Part. Phys. Proc. 265–266, 7–12 (2015). https://doi.org/10.1016/j.nuclphysbps.2015.06.003

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy (DOE) Nuclear Energy’s Fuel Cycle Research and Development (FCR&D), Materials Protection, Accounting and Control Technologies (MPACT) Campaign and Los Alamos National Laboratory, Laboratory-Directed Research and Development Program. We gratefully acknowledge the support of the Center for Integrated Nanotechnologies, an Office of Science User Facility, and the Massachusetts Institute of Technology reactor personnel, in particular Thomas Bork for facilitating the radiation and Mike Ames for conducting immediate gamma measurements and modeling the irradiation. Heartfelt thanks to Dave Mercer for his assistance with the gamma spectroscopy and analysis, and Andrew Hoover for participating in peer review of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Koehler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koehler, K.E., Famiano, M.A., Fontes, C.J. et al. First Calorimetric Measurement of Electron Capture in \({}^{193}\)Pt with a Transition-Edge Sensor. J Low Temp Phys 193, 1151–1159 (2018). https://doi.org/10.1007/s10909-018-1984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1984-2

Keywords

Navigation