Skip to main content
Log in

Universal Features of the Electron Transport in Tungsten–Carbon Nanocomposites

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The wide-temperature-range (4.2–300 K) electron transport had being studied in tungsten–carbon nanocomposites in tungsten concentration interval 0.1–0.45. It is shown that electron transport in the nanocomposites possesses the features of the universality, manifested in the form of power-law dependences of the conductivity on temperature in the two characteristic temperature intervals. The critical temperature separating the intervals is about 25–30 K and has no appreciable dependence on the value of tungsten concentration in nanocomposites. The power exponents of the temperature dependences of the conductivity in both temperature intervals are the non-monotonic functions of the tungsten concentration and vary in the range 0–2 with a wide minimum at 0.2 and 0.25 of tungsten content in the high- and low-temperature intervals, respectively. The observed power-law temperature corrections to the conductivity are simulated and discussed within the effective medium approximation in the framework of the model of the inelastic tunneling of the electrons between the conducting clusters in the tungsten–carbon nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I.I. Kang, M.J. Schulz, J.H. Kim, V. Shanev, D. Shi, A carbon nanotube strain sensor for structural health monitoring. Smart Mater. Struct. 15, 737–748 (2006)

    Article  ADS  Google Scholar 

  2. J. Hrbac, V. Halouzka, R. Zboril, K. Papadopoulos, T. Triantis, Carbon electrodes modified by nanoscopic iron(III) oxides to assemble chemical sensors for the hydrogen peroxide amperometric detection. Electroanalysis 19, 1850–1854 (2007)

    Article  Google Scholar 

  3. T. Sen, N.G. Shimpi, S. Mishra, Room temperature CO sensing by polyaniline/Co3O4 nanocomposite. J. Appl. Polym. Sci. 133, 44115(1)–44115(8) (2016)

    Article  Google Scholar 

  4. F. Gyger, A. Sackmann, M. Hübner, P. Bockstaller, D. Gerthsen, H. Lichtenberg, J.-D. Grunwaldt, N. Barsan, U. Weimar, C. Feldmann, Pd@SnO2 and SnO2@Pd Core@Shell nanocomposite sensors. Part. Part. Syst. Char. 31, 591–596 (2014)

    Article  Google Scholar 

  5. L. Dong, D. Liang, R. Gong, In situ photoactivated AgCl/Ag nanocomposites with enhanced visible light photocatalytic and antibacterial activity. Eur. J. Inorg. Chem. 19, 3200–3208 (2012)

    Article  Google Scholar 

  6. N. Myung, W. Lee, C. Lee, S. Jeong, K. Rajeshwar, Synthesis of Au-BiVO4 nanocomposite through anodic electrodeposition followed by galvanic replacement and its application to the photocatalytic decomposition of methyl orange. ChemPhysChem 15, 2052–2057 (2014)

    Article  Google Scholar 

  7. Y. Lin, Z. Geng, H. Cai, L. Ma, J. Chen, J. Zeng, N. Pan, X. Wang, Ternary graphene–TiO2–Fe3O4 nanocomposite as a recollectable photocatalyst with enhanced durability. Eur. J. Inorg. Chem. 28, 4439–4444 (2012)

    Article  Google Scholar 

  8. Aaryashree, S. Biswas, P. Sharma, V. Awasthi, B.S. Sengar, A.K. Das, S. Mukherjee, Photosensitive ZnO-graphene quantum dot hybrid nanocomposite for optoelectronic applications. ChemistrySelect 1, 1503–1509 (2016)

    Article  Google Scholar 

  9. Y.-H. Kim, W.-J. Cho, S.-I. Kim, Cathodoluminescence of ZnSiOx nanocomposite films prepared on Si substrates. Phys. Status Solidi C 6, 894–897 (2009)

    Article  ADS  Google Scholar 

  10. D. Chen, Z. Luo, N. Li, J.Y. Lee, J. Xie, J. Lu, Amphiphilic polymeric nanocarriers with luminescent gold nanoclusters for concurrent bioimaging and controlled drug release. Adv. Funct. Mater. 23, 4324–4331 (2013)

    Article  Google Scholar 

  11. J. Arjomandi, N. Keramat, I. Mossa, B. Jaleh, Electrochemical synthesis and in situ spectroelectrochemistry of conducting NMPy-TiO2 and ZnO polymer nanocomposites for Li secondary battery applications. J. Appl. Polym. Sci. 132, 41526(1)–41526(11) (2015)

    Article  Google Scholar 

  12. M. Nanu, J. Schoonman, A. Goossens, Solar-energy conversion in TiO2/CuInS2 nanocomposites. Adv. Funct. Mater. 15, 95–100 (2005)

    Article  Google Scholar 

  13. J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R37, 129–281 (2002)

    Article  Google Scholar 

  14. E.G. Gerstner, P.B. Lukins, D.R. McKenzie, D.G. McCulloch, Substrate bias effects on the structural and electronic properties of tetrahedral amorphous carbon. Phys. Rev. B 54, 14504–14510 (1996)

    Article  ADS  Google Scholar 

  15. P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne, J. Koskinen, Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy. Phys. Rev. B 48, 4777–4782 (1993)

    Article  ADS  Google Scholar 

  16. M. Ghowalla, A.C. Ferrari, J. Robertson, C.A.J. Amaratunga, Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy. Appl. Phys. Lett. 76, 1419–1421 (2000)

    Article  ADS  Google Scholar 

  17. S. Sattel, J. Robertson, H. Ehrhardt, Effects of deposition temperature on the properties of hydrogenated tetrahedral amorphous carbon. J. Appl. Phys. 82, 4566–4576 (1997)

    Article  ADS  Google Scholar 

  18. A.C. Ferrari, B. Kleinsorge, N.A. Morrison, A. Hart, V. Stolojan, J. Robertson, Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon. J. Appl. Phys. 85, 7191–7197 (1999)

    Article  ADS  Google Scholar 

  19. S. Prawer, R. Kalish, M. Adel, V. Richter, Effects of heavy ion irradiation on amorphous hydrogenated (diamondlike) carbon films. J. Appl. Phys. 61, 4492–4500 (1987)

    Article  ADS  Google Scholar 

  20. T. Mori, Y. Futagami, E. Kishimoto, A. Shirakura, T. Suzuki, Synthesis of hard hydrogenated amorphous carbon films by atmospheric pressure filamentary dielectric barrier discharge. J. Vac. Sci. Technol. A33, 060607 (2015)

    Article  Google Scholar 

  21. A. Carl, G. Dumpich, E.F. Wassermann, Structural properties of granular PdxC1−x films. Phys. Rev. B 50, 7838–7844 (1994)

    Article  ADS  Google Scholar 

  22. Ph Gouy-Pailler, Y. Pauleau, Tungsten and tungsten–carbon thin films deposited by magnetron sputtering. J. Vac. Sci. Technol. A11, 96–102 (1993)

    Article  ADS  Google Scholar 

  23. Q.F. Huang, S.F. Yoon, H. Yang, J. Ahn, Q. Zhang, Molybdenum-containing carbon films deposited using the screen grid technique in an electron cyclotron resonance chemical vapor deposition system. Diam. Relat. Mater. 9, 534–538 (2000)

    Article  ADS  Google Scholar 

  24. D. Li, W.F. Li, S. Ma, Z.D. Zhang, Electronic transport properties of NbC(C)–C nanocomposites. Phys. Rev. B 73, 193402–193404 (2006)

    Article  ADS  Google Scholar 

  25. L. Zeng, H. Zutz, F. Hellman, E. Helgren, J.W. Ager, C. Ronning, Magnetoelectronic properties of Gd-implanted tetrahedral amorphous carbon. Phys. Rev B 84, 134419 (2011)

    Article  ADS  Google Scholar 

  26. K. Tang, X. Wu, G. Wang, L. Li, S. Wu, X. Dong, Z. Liu, B. Zhao, One-step preparation of silver nanoparticle embedded amorphous carbon for nonenzymatic hydrogen peroxide sensing. Electrochem. Commun. 68, 90–94 (2016)

    Article  Google Scholar 

  27. K. Nygren, M. Andersson, J. Högström, W. Fredriksson, K. Edström, L. Nyholm, U. Jansson, Influence of deposition temperature and amorphous carbon on microstructure and oxidation resistance of magnetron sputtered nanocomposite Cr–C films. Appl. Surf. Sci. 305, 143–153 (2014)

    Article  ADS  Google Scholar 

  28. W.Q. Bai, L.L. Li, X.L. Wang, F.F. He, D.G. Liu, G. Jin, J.P. Tu, Effects of Ti content on microstructure, mechanical and tribological properties of Ti-doped amorphous carbon multilayer films. Surf. Coat. Technol. 266, 70–78 (2015)

    Article  Google Scholar 

  29. I.S. Beloborodov, A.V. Lopatin, V.M. Vinokur, K.B. Efetov, Granular electronic systems. Rev. Mod. Phys. 79, 469–518 (2007)

    Article  ADS  Google Scholar 

  30. K.B. Efetov, A. Tschersich, Coulomb effects in granular materials at not very low temperatures. Phys. Rev. B 67, 174205–174215 (2003)

    Article  ADS  Google Scholar 

  31. I.S. Beloborodov, A.V. Lopatin, V.M. Vinokur, Universal description of granular metals at low temperatures: granular Fermi liquid. Phys. Rev. B 70, 205120–205125 (2004)

    Article  ADS  Google Scholar 

  32. L. Rotkina, S. Oh, J.N. Eckstein, S.V. Rotkin, Logarithmic behavior of the conductivity of electron-beam deposited granular Pt∕C nanowires. Phys. Rev. B 72, 233407 (2005)

    Article  ADS  Google Scholar 

  33. R. Sachser, F. Porrati, C.H. Schwalb, M. Huth, Universal conductance correction in a tunable strongly coupled nanogranular metal. Phys. Rev. Lett. 107, 206803–206805 (2011)

    Article  ADS  Google Scholar 

  34. Y.-C. Sun, S.-S. Yeh, J.-J. Lin, Conductivity and tunneling density of states in granular Cr films. Phys. Rev. B 82, 054203–054207 (2010)

    Article  ADS  Google Scholar 

  35. Y.-J. Zhang, Z.-Q. Li, J.-J. Lin, Logarithmic temperature dependence of Hall transport in granular metals. Phys. Rev. B 84, 052202–052204 (2011)

    Article  ADS  Google Scholar 

  36. M. Salvato, M. Lucci, I. Ottaviani, M. Cirillo, E. Tamburri, S. Orlanducci, M.L. Terranova, M. Notarianni, C.C. Young, N. Behabtu, M. Pasquali, Transport mechanism in granular Ni deposited on carbon nanotubes fibers. Phys. Rev B 86, 115117 (2012)

    Article  ADS  Google Scholar 

  37. Y.-N. Wu, Y.-F. Wei, Z.-Q. Li, J.-J. Lin, Electron–electron interaction effect on longitudinal and Hall transport in thin and thick Agx(SnO2)1−x granular metals. Phys. Rev. B 91, 104201–104207 (2015)

    Article  ADS  Google Scholar 

  38. A.R. Akhmerov, A.S. Ioselevich, Universal temperature dependence of the conductivity of a strongly disordered granular metal. JETP Lett. 83, 211–216 (2006)

    Article  ADS  Google Scholar 

  39. B.F. Dorfman, Stabilized sp2/sp3 carbon and metal-carbon composites of atomic scale as interface and surface-controlling dielectric and conducting materials, in Handbook of Surfaces and Interfaces of Materials, ed. by H.S. Nalwa (Academic Press, San Diego, 2001), pp. 447–509

    Chapter  Google Scholar 

  40. B.F. Dorfman, Critical parameters of percolation in metal-dielectric diamond-like composites of atomic scale. Thin Solid Films 330, 76–82 (1998)

    Article  ADS  Google Scholar 

  41. V.F. Dorfman, A. Bozhko, B.N. Pypkin, R.T. Borra, A.R. Srivatsa, H. Zhang, T.A. Skotheim, I. Khan, D. Rodichev, G. Kirpilenko, Diamond-like nanocomposites: electronic transport mechanisms and some applications. Thin Solid Films 212, 274–281 (1992)

    Article  ADS  Google Scholar 

  42. A. Bozhko, A. Ivanov, M. Berrettoni, S. Chudinov, S. Stizza, V. Dorfman, B. Pypkin, Electroconductivity of amorphous carbon films containing silicon and tungsten. Diam. Relat. Mater. 4, 488–491 (1995)

    Article  ADS  Google Scholar 

  43. J.Z. Wan, F.H. Pollak, B.F. Dorfman, Micro-Raman study of diamondlike atomic-scale composite films modified by continuous wave laser annealing. J. Appl. Phys. 81, 6407–6414 (1997)

    Article  ADS  Google Scholar 

  44. B. Abeles, P. Sheng, M.D. Coutts, Y. Arie, Structural and electrical properties of granular metal films. Adv. Phys. 24(3), 407–461 (1975)

    Article  ADS  Google Scholar 

  45. H. Miki, T. Takeno, T. Takagi, A. Bozhko, M. Shupegin, H. Onodera, T. Komiyama, T. Aoyama, Superconductivity in W-containing diamond-like nanocomposite films. Diam. Relat. Mater. 15, 1898–1901 (2006)

    Article  ADS  Google Scholar 

  46. A. Bozhko, S. Chudinov, S. Stizza, B. Pypkin, M. Shupeggin, Cluster superconductivity in diamond-like carbon–silicon nanocomposites containing tungsten. J. Phys.: Condens. Matter 10, 1855–1862 (1998)

    ADS  Google Scholar 

  47. G. Ambrosetti, I. Balberg, C. Grimaldi, Percolation-to-hopping crossover in conductor-insulator composites. Phys. Rev B 82, 134201–134207 (2010)

    Article  ADS  Google Scholar 

  48. L.I. Glazman, K.A. Matveev, Inelastic tunneling across thin amorphous films. Sov. Phys.-JETP 67, 1276–1282 (1988)

    Google Scholar 

  49. L.I. Glazman, R.I. Shekhter, Inelastic resonant tunneling of electrons through a potential barrier. Sov. Phys.-JETP 67, 163–170 (1988)

    Google Scholar 

  50. R. Zallen, Polychromatic percolation: coexistence of percolating species in highly connected lattices. Phys. Rev. B 16, 1426–1435 (1977)

    Article  ADS  Google Scholar 

  51. D.A.G. Von Bruggeman, Berechnung vershiedener physikalischer Konstanten von heterogenen Substanzen. Ann. Phys. 5, 636–664 (1935)

    Article  Google Scholar 

  52. N. Li, Y.-Y. Zhang, G.-J. Jin, Effective-medium approach for conductivities in multi-component granular mixtures. Chin. Phys. Lett. 25, 4395–4398 (2008)

    Article  ADS  Google Scholar 

  53. J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963)

    Article  ADS  Google Scholar 

  54. A. Bozhko, T. Takagi, T. Takeno, M. Shupegin, Electron transport in W-containing amorphous carbon–silicon diamond-like nanocomposites. J. Phys.: Condens. Matter 16, 8447–8458 (2004)

    ADS  Google Scholar 

  55. A. Bozhko, T. Takagi, T. Takeno, M. Shupegin, Electron transport in amorphous carbon–silicon nanocomposites containing Nb. Jap. J. Appl. Phys. 43, 7566–7571 (2004)

    Article  ADS  Google Scholar 

  56. A.D. Bozhko, Logarithmic conductivity of Cr–C nanocomposites. Physics Procedia 71, 343–347 (2016)

    Article  ADS  Google Scholar 

  57. A.D. Bozhko, Power-like corrections to the conductivity of Mo–C nanocomposites. Nanosyst. Phys. Chem. Math. 7, 169–174 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. L.D. Iskhakova (Fiber Optics Center of RAS) for her kind assistance in the tungsten concentration measurements, Prof. V.V. Glushkov, and Dr. A.N. Samarin (Prokhorov General Physics Institute of RAS) for valuable discussions. VVB (electron microscopy data, discussion of the results) is grateful to RSF (14-22-00093) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Bozhko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozhko, A.D., Brazhkin, V.V. & Shupegin, M.L. Universal Features of the Electron Transport in Tungsten–Carbon Nanocomposites. J Low Temp Phys 192, 299–314 (2018). https://doi.org/10.1007/s10909-018-1975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1975-3

Keywords

Navigation