Skip to main content
Log in

Ab Initio Study of the Electronic Structure, Elastic Properties, Magnetic Feature and Thermodynamic Properties of the Ba2NiMoO6 Material

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report first-principles calculations of the elastic properties, electronic structure and magnetic behavior performed over the Ba2NiMoO6 double perovskite. Calculations are carried out through the full-potential linear augmented plane-wave method within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient and Local Density Approximations, including spin polarization. The elastic properties calculated are bulk modulus (B), the elastic constants (C11, C12 and C44), the Zener anisotropy factor (A), the isotropic shear modulus (G), the Young modulus (Y) and the Poisson ratio (υ). Structural parameters, total energies and cohesive properties of the perovskite are studied by means of minimization of internal parameters with the Murnaghan equation, where the structural parameters are in good agreement with experimental data. Furthermore, we have explored different antiferromagnetic configurations in order to describe the magnetic ground state of this compound. The pressure and temperature dependence of specific heat, thermal expansion coefficient, Debye temperature and Grüneisen parameter were calculated by DFT from the state equation using the quasi-harmonic model of Debye. A specific heat behavior CV ≈ CP was found at temperatures below T = 400 K, with Dulong–Petit limit values, which is higher than those, reported for simple perovskites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.M. Hazen, Sci. Am. 258, 52 (1988)

    Article  Google Scholar 

  2. Q. Madueño, D.A. Landínez Téllez, J. Roa-Rojas, Mod. Phys. Lett. B 20, 427 (2006)

    Article  ADS  Google Scholar 

  3. J.C. Albornoz, D.A. Landínez Téllez, J.A. Munévar, E. Baggio-Saitovich, J. Roa-Rojas, J. Supercond. Nov. Magn. 26, 2313 (2013)

    Article  Google Scholar 

  4. H. Sakakima, M. Satomi, E. Hirota, H. Adachi, IEEE Trans. Magn. 35, 2958 (2002)

    Article  ADS  Google Scholar 

  5. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 425, 55 (2003)

    Article  ADS  Google Scholar 

  6. J.M. De Teresa, J.M. Michalik, J. Blasco, P.A. Algarabel, M.R. Ibarra, C. Kapusta, U. Zeitler, Appl. Phys. Lett. 90, 252414 (2007)

    Article  Google Scholar 

  7. L.L. Balcells, R. Enrich, A. Calleja, J. Fontcuberta, X. Obradors, J. Appl. Phys. 80, 4298 (1997)

    Article  ADS  Google Scholar 

  8. Y. Mao, J. Parsons, J.S. McCloy, Nanoscale 5, 4720 (2013)

    Article  ADS  Google Scholar 

  9. M. Bonilla, D.A. Landínez Téllez, J. Arbey Rodríguez, F. Fajardo, J. Roa-Rojas, J. Supercond. Nov. Magn. 26, 2307 (2013)

    Article  Google Scholar 

  10. M.J. Martínez-Lope, J.A. Alonso, M.T. Casais, Eur. J. Inorg. Chem. 2003, 2839 (2003)

    Article  Google Scholar 

  11. Y. Aharbil, H. Labrim, S. Benmokhtar, M. Ait Haddouch, L. Bahmad, L. Laanab, Mater. Res. Express 3, 086104 (2016)

    Article  ADS  Google Scholar 

  12. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, Wien2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Tech. Universität Wien, Wien, 2001). ISBN 3-9501031-1-2. http://www.wien2k.at

  13. E. Engel, R.M. Dreizler, Density Functional Theory (Springer, Berlin, 2011). ISBN 978-3-642-14090-7

    Book  MATH  Google Scholar 

  14. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  15. M. Jamal, S. Jalali Asadabadi, I. Ahmad, H.A. Rahnamaye Aliabad, Comput. Mater. Sci. 95, 592 (2014)

    Article  Google Scholar 

  16. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  17. N. Marzari, D. Vanderbilt, A. de Vita, M.C. Payne, Phys. Rev. Lett. 82, 3296 (1999)

    Article  ADS  Google Scholar 

  18. K. Lejaeghere, G. Bihlmayer, T. Bjorkman, P. Blaha, S. Blugel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso et al., Science 351, 1415 (2016)

    Article  Google Scholar 

  19. L. Brillouin, Tensors in Mechanics and Elasticity (Academic, New York, 1964)

    Google Scholar 

  20. A.A. Maradudin, E.W. Montroll, G.H. Weiss, I.P. Ipatova, Theory of Lattice Dynamics in the Harmonic Approximation, 2nd edn. (Academic Press, New York, 1971)

    Google Scholar 

  21. M.A. Blanco, E. Francisco, V. Luaña, Comput. Phys. Commun. 158, 57 (2004)

    Article  ADS  Google Scholar 

  22. M.W. Lufaso, P.M. Woodward, Acta Cryst. B 57, 725 (2001)

    Article  Google Scholar 

  23. W. Kraus, G. Nolze, J. Appl. Cryst. 29, 301 (1996)

    Article  Google Scholar 

  24. W.T. Fu, D.J. Ijdo, Solid State Chem. 128, 323 (1997)

    Article  ADS  Google Scholar 

  25. J.A. Cuervo Farfán, D.M. Aljure García, R. Cardona, D.A. Landínez Téllez, J. Roa-Rojas, J. Low Temp. Phys. 186, 295 (2017)

    Article  ADS  Google Scholar 

  26. R. Cardona, R. Moreno Mendoza, L.A. Carrero Bermúdez, D.A. Landínez Téllez, J. Roa-Rojas, J. Low Temp. Phys. 182, 61 (2016)

    Article  ADS  Google Scholar 

  27. F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1994)

    Article  ADS  Google Scholar 

  28. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954)

    MATH  Google Scholar 

  29. H.M. Ledbetter, R.P. Reed, J. Phys. Chem. Ref. Data 2, 531 (1973)

    Article  ADS  Google Scholar 

  30. G. Alers, J.R. Neighbours, J. Phys. Chem. Solids 13, 40 (1960)

    Article  ADS  Google Scholar 

  31. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Article  Google Scholar 

  32. M. Faizan, G. Murtaza, S.H. Khan, A. Khan, A. Mehmood, R. Khenata, S. Hussain, Bull. Mater. Sci. 39, 1419 (2016)

    Article  Google Scholar 

  33. S.K. Kwon, B.I. Min, Phys. Rev. B 62, 73 (2000)

    Article  ADS  Google Scholar 

  34. X. Li, W. Zhang, J. Du, Mater. Trans. 52, 1717 (2011)

    Article  Google Scholar 

  35. Z.-J. Liu, X.-M. Tan, Y. Guo, X.-P. Zheng, W.-Z. Wu, J. Phys. Sci. 64, 401 (2009)

    Google Scholar 

  36. E.S. Dedova, V.S. Shadrin, M.Y. Petrushina, S.N. Kulkov, Mater. Sci. Eng. 116, 012030 (2016)

    Google Scholar 

  37. L. Qiang, H. Duo-Hui, C. Qi-Long, W. Fan-Hou, Chin. Phys. B 22, 037101 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Division of Investigations (DIB) of the Universidad Nacional de Colombia, FONCIENCIAS of Universidad del Magdalena and Project 11/I205 of Universidad Nacional de La Plata and the Ab Initio Computing cluster of the IFLP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Roa-Rojas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deluque Toro, C.E., Mosquera Polo, A.S., Gil Rebaza, A.V. et al. Ab Initio Study of the Electronic Structure, Elastic Properties, Magnetic Feature and Thermodynamic Properties of the Ba2NiMoO6 Material. J Low Temp Phys 192, 265–285 (2018). https://doi.org/10.1007/s10909-018-1937-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1937-9

Keywords

Navigation