Skip to main content

Advertisement

Log in

Effect of Low Temperature on a 4 W/60 K Pulse-Tube Cryocooler for Cooling HgCdTe Detector

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Temperature is an extremely important parameter for the material of the space-borne infrared detector. To cool an HgCdTe-infrared detector, a Stirling-type pulse-tube cryocooler (PTC) has been developed based on a great deal of numerical simulations, which are performed to investigate the thermodynamic behaviors of the PTC. The effects of different low temperatures are presented to analyze different energy flows, losses, phase shifts, and impedance matching of the PTC at a temperature range of 40–120 K, where woven wire screens are used. Finally, a high-efficiency coaxial PTC has been designed, built, and tested, operating around 60 K after a number of theoretical and experimental studies. The PTC can offer a no-load refrigeration temperature of 40 K with an input electric power of 150 W, and a cooling power of 4 W at 60 K is obtained with Carnot efficiency of 12%. In addition, a comparative study of simulation and experiment has been carried out, and some studies on reject temperatures have been presented for a thorough understanding of the PTC system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Area

u :

Velocity

P :

Pressure

F :

Viscous pressure gradient

C v :

Isochoric specific heat

C p :

Isobaric specific heat

T :

Temperature

k :

Thermal conductivity

R :

Gas constant

Bl :

Force factor

c :

Damping coefficient

R a :

Impedance real part

X a :

Impedance imaginary part

Relec:

Electric resistance

k s :

Spring stiffness

m :

Moving mass

W pv :

Acoustic power

Welec:

Electric power

Q :

Energy flow

t :

Time

x :

Longitude coordinate

ρ :

Density

α :

Heat transfer coefficient

η :

Electric-to-acoustic efficiency

ω :

Angular frequency

θ :

Angular

a:

Acoustic load

m, o:

Mean

v:

Isochoric

p:

Isobaric

Loss-reg:

Regenerator loss

Reg:

Regenerative

Cond:

Thermal conduction

Res:

Flow resistance

pv:

Acoustic

Elec:

Electric

\( \bullet \) :

Derivative

\( | {} | \) :

Magnitude of complex number

References

  1. Frank Pobell, Matter and Methods at Low Temperatures (Springer, Berlin, 2007)

    Book  Google Scholar 

  2. A. Rogalski, Recent progress in infrared detector technologies. Infrared Phys. Technol. 54, 136–154 (2011)

    Article  ADS  Google Scholar 

  3. N. Rando, D. Lumb, M. Bavdaz et al., Space science applications of cryogenic detectors. Nucl. Instr. Methods Phys. Res. A 522, 62–68 (2004)

    Article  ADS  Google Scholar 

  4. R. Radebaugh, Cryocoolers for aircraft superconducting generators and motors. Adv. Cryog. Eng. 1434, 171–182 (2012)

    Google Scholar 

  5. R. Radebaugh, Cryocoolers: the state of the art and recent developments. J. Phys. 21, 1–9 (2009)

    Google Scholar 

  6. J. Raab, E. Tward, Northrop Grumman Aerospace Systems cryocooler overview. Cryogenics 50, 572–581 (2010)

    Article  ADS  Google Scholar 

  7. E. Tward, C.K. Chan, J. Raab, High efficiency pulse tube cooler. Int. Cryocool. Conf. 11, 163–167 (2001)

    Google Scholar 

  8. K.B. Wilson, C.C. Fralick, D.R. Gedeon, Sunpower’s CPT60 pulse tube cryocooler. Cryocoolers 14, 123–132 (2007)

    Google Scholar 

  9. T. Nguyen, G. Toma, J. Raab, HEC pulse tube cooler performance enhancement. Int. Cryocool. Conf. 17, 79–83 (2012)

    Google Scholar 

  10. W. van de Groep, J.C. Mullie, D. Willems et al., Development of a 15 W coaxial pulse tube cooler. Cryocoolers 15, 157–165 (2009)

    Google Scholar 

  11. J.Y. Hu, W. Dai, E.C. Luo et al., Development of high efficiency stirling-type pulse tube cryocoolers. Cryogenics 50, 603–607 (2010)

    Article  ADS  Google Scholar 

  12. M.G. Zhao, Y.J. Liu, J.H. Cai et al., Experimental investigation of a 40 K single stage high frequency Pulse Tube Cryocooler. Int. Cryocool. Conf. 17, 115–119 (2012)

    Google Scholar 

  13. R. Radebaugh, Pulse tube cryocoolers for cooling infrared sensors, in Proceedings of SPIE 4130, (2000)

  14. P.C.T. de Boer, Optimal performance of regenerative cryocoolers. Cryogenics 51, 105–113 (2011)

    Article  ADS  Google Scholar 

  15. K.B. Wilson, R.Z. Unger, High efficiency pressure oscillator for low-temperature pulse tube cryocooler, in Proceeding of ICEC 2004, (2004)

  16. T. Ki, S. Jeong, Stirling-type pulse tube cryocooler with slit-type heat exchangers for HTS superconducting motor. Cryogenics 51, 341–346 (2011)

    Article  ADS  Google Scholar 

  17. R. Radebaugh, Thermodynamics of regenerative cryocoolers. in Generation of Low Temperature and It’s Applications 2003. Japan, 1–20

  18. X. Zhi, L. Qiu et al., Review of recent development of stirling-type pulse tube cryocooler below 20 K and analysis of its loss mechanism. Cryog. Chin. 180, 25–33 (2011)

    Google Scholar 

  19. P. Kittel, Enthalpy, enthropy and exergy flow losses in pulse tube cryocoolers. Cryocoolers 13, 343–352 (2004)

    Google Scholar 

  20. K. Wang, S. Dubey, F.H. Choo et al., Modelling of pulse tube cryocoolers with inertance tube and mass-spring feedback mechanism. Appl. Energy 171, 172–183 (2016)

    Article  Google Scholar 

  21. K.A. Gschneidner Jr., The fruition of 4f discovery, the interplay of basic and applied research. J. Alloy. Compd. 344, 356–361 (2002)

    Article  Google Scholar 

  22. A. Zhang, Y. Wu, S. Liu et al., High-efficiency 3 W/40 K single-stage pulse tube cryocooler for space application. Cryogenics 90, 41–46 (2018)

    Article  ADS  Google Scholar 

  23. A. Zhang, X. Chen, Y. Wu et al., Study on a 10 W/90 K in-line pulse tube cryocooler. Cryogenics 52, 800–804 (2012)

    Article  ADS  Google Scholar 

  24. R. Radebaugh, Inertance tube optimization for pulse tube cryocoolers. Adv. Cryog. Eng. 51, 59–67 (2006)

    Article  Google Scholar 

  25. A.K. Zhang, Y.N. Wu, S.S. Liu et al., Effect of impedance on a compressor driving pulse tube cryocooler. Appl. Therm. Eng. 124, 688–694 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 51741610) and National key R&D program of China (No. 2016YFB0500601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankuo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Liu, S. & Wu, Y. Effect of Low Temperature on a 4 W/60 K Pulse-Tube Cryocooler for Cooling HgCdTe Detector. J Low Temp Phys 192, 184–200 (2018). https://doi.org/10.1007/s10909-018-1928-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1928-x

Keywords

Navigation