Skip to main content
Log in

Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In the next decade, new ground-based cosmic microwave background (CMB) experiments such as Simons Observatory, CCAT-prime, and CMB-S4 will increase the number of detectors observing the CMB by an order of magnitude or more, dramatically improving our understanding of cosmology and astrophysics. These projects will deploy receivers with as many as hundreds of thousands of transition edge sensor (TES) bolometers coupled to superconducting quantum interference device (SQUID)-based readout systems. It is well known that superconducting devices such as TESes and SQUIDs are sensitive to magnetic fields. However, the effects of magnetic fields on TESes are not easily predicted due to the complex behavior of the superconducting transition, which motivates direct measurements of the magnetic sensitivity of these devices. We present comparative four-lead measurements of the critical temperature versus applied magnetic field of AlMn TESes varying in geometry, doping, and leg length, including Advanced ACT and POLARBEAR-2/Simons Array bolometers. MoCu ACTPol TESes are also tested and are found to be more sensitive to magnetic fields than the AlMn devices. We present an observation of weak-link-like behavior in AlMn TESes at low critical currents. We also compare measurements of magnetic sensitivity for time division multiplexing SQUIDs and frequency division multiplexing microwave (\(\mu \)MUX) rf-SQUIDs. We discuss the implications of our measurements on the magnetic shielding required for future experiments that aim to map the CMB to near-fundamental limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. http://www.ccatobservatory.org

  2. http://www.simonsobservatory.org

  3. J.W. Fowler et al., Appl. Opt. 46, 3444 (2007). https://doi.org/10.1364/AO.46.003444

    Article  ADS  Google Scholar 

  4. K Harrington et al., Proc. SPIE Int. Soc. Opt. Eng. 9914, 99141K (2016). https://doi.org/10.1117/12.2233125

  5. K. Arnold et al., Proc. SPIE 8452, 84521D (2012). https://doi.org/10.1117/12.927057

    Article  Google Scholar 

  6. K.N. Abazajian et al., ArXiv e-prints 1610, 02743 (2016)

  7. S.W. Deiker et al., Appl. Phys. Lett. 85(11), 2137 (2004). https://doi.org/10.1063/1.1789575

    Article  ADS  Google Scholar 

  8. S.W. Henderson et al., J. Low Temp. Phys. 184(3–4), 772 (2015). https://doi.org/10.1007/s10909-016-1575-z

    Article  ADS  Google Scholar 

  9. S.M. Duff et al., J Low Temp Phys 184(3), 634 (2016). https://doi.org/10.1007/s10909-016-1576-y

    Article  ADS  Google Scholar 

  10. M.H. Abitbol et al., ArXiv e-prints 1706, 02464 (2017)

  11. T.M. Lanting et al., Appl. Phys. Lett. 86, 112511 (2005)

    Article  ADS  Google Scholar 

  12. K.D. Irwin, K.W. Lehnert, Appl. Phys. Lett. 85, 2107 (2004)

    Article  ADS  Google Scholar 

  13. J.A.B. Mates, G.C. Hilton, K.D. Irwin, L.R. Vale, K.W. Lehnert, Appl. Phys. Lett. 92, 023514 (2008)

    Article  ADS  Google Scholar 

  14. R.J. Thornton et al., Proc. SPIE 7020, 7020 (2008). https://doi.org/10.1117/12.790078

    Article  Google Scholar 

  15. J.T. Ward et al., Proc. SPIE 9914, 991437 (2016). https://doi.org/10.1117/12.2233746

    Article  Google Scholar 

  16. E.E. Quealy, Ph.D. thesis, University of California, Berkeley (2012)

  17. E. Grace et al., J. Low Temp. Phys. 176(5–6), 705 (2014). https://doi.org/10.1007/s10909-014-1125-5

    Article  ADS  Google Scholar 

  18. A. Suzuki et al., J. Low Temp. Phys. 184, 805 (2016). https://doi.org/10.1007/s10909-015-1425-4

    Article  ADS  Google Scholar 

  19. D. Li et al., J. Low Temp. Phys. 184, 66 (2016). https://doi.org/10.1007/s10909-016-1526-8

    Article  ADS  Google Scholar 

  20. D.R. Schmidt et al., IEEE Trans. Appl. Supercond. 21(3), 196 (2011). https://doi.org/10.1109/TASC.2010.2090313

    Article  ADS  Google Scholar 

  21. J.E. Sadleir et al., Phys. Rev. Lett. 104(4), 047003 (2010). https://doi.org/10.1103/PhysRevLett. 104.047003

  22. Sadleir, J.E., Superconducting transition-edge sensor physics, Ph.D. Thesis, University of Illinois (2010)

  23. S.J. Smith et al., J. Appl. Phys. 114(7), 074513–074513-24 (2013). https://doi.org/10.1063/1.4818917

    Article  ADS  Google Scholar 

  24. J.N. Ullom, D.A. Bennett, Supercond. Sci. Technol. 28(8), 084003 (2015). https://doi.org/10.1088/0953-2048/28/8/084003

    Article  ADS  Google Scholar 

  25. S.W. Henderson et al., Proc. SPIE 9914, 99141G (2016). https://doi.org/10.1117/12.2233895

    Article  Google Scholar 

  26. M.D. Niemack, Towards Dark Energy: Design, Development, and Preliminary Data from ACT, Ph.D. Thesis, Princeton University (2008)

  27. S.-P.P. Ho et al., Proc. SPIE 9914, 9914 (2017). https://doi.org/10.1117/12.2233113

    Article  Google Scholar 

  28. E.A. Grace, Ph.D. thesis, Princeton University (2016)

  29. A. Suzuki, Ph.D. thesis, University of California, Berkeley (2013)

  30. B.K. et al., J. Low Temp. Phys. This Special Issue LTD17 (2018). https://doi.org/10.1007/s10909-018-1957-5

  31. M.D. Audley et al., Proc. SPIE 5498, 63 (2004). https://doi.org/10.1117/12.551259

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Christine Pappas for useful discussions of weak-link-like behavior in AlMn TESes, Zeqi Gu for assistance in measuring magnetic shielding values, and Suzanne Staggs, Edward Wollack, and Kevin Crowley for their helpful comments and feedback which have improved this work. The authors also thank the Atacama Cosmology Telescope, Simons Array, and Simons Observatory collaborations for their contributions, including the development of the detectors tested in this paper. This work was supported by NSF Grant AST-1454881. EMV was supported by the NSF GRFP under Grant No. DGE-1650441.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Vavagiakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vavagiakis, E.M., Henderson, S.W., Zheng, K. et al. Magnetic Sensitivity of AlMn TESes and Shielding Considerations for Next-Generation CMB Surveys. J Low Temp Phys 193, 288–297 (2018). https://doi.org/10.1007/s10909-018-1920-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1920-5

Keywords

Navigation