Superconducting Ti/TiN Thin Films for mm-Wave Absorption

  • A. Aliane
  • M. Solana
  • W. Rabaud
  • L. Saminadayar
  • P. Agnese
  • V. Goudon
  • L. Dussopt
  • C. Vialle
  • E. Baghe
  • S. Pocas
  • L. Carle
  • N. Lio Soon Shun
  • S. Becker
  • V. Reveret
  • L. Rodriguez
  • A. Hamelin
  • A. Poglitsch
  • S. Bounissou
  • O. Adami
Article

Abstract

Polarization-sensitive detectors at 120–500 GHz are required for the observation of the cosmic microwave background radiation. In this paper, superconducting thin films based on Ti/TiN bilayers are developed to be integrated as electromagnetic wave absorbers in suspended cooled silicon bolometers. The critical temperature (Tc) is tuned in the range of 600–800 mK through the superconductivity proximity effect between Ti and TiN to optimize the absorption of the incident power while minimizing the heat capacity of the system at low temperature. Ti/TiN bilayer samples are fabricated on silicon with two different thicknesses (100/5 and 300/5 nm). Electrical characterizations at low temperature have been performed and revealed the effect of thermal annealing (20–250 °C) on residual stress, Tc, critical magnetic field (Hc) and resistance above Tc. A physical characterization by X-ray photoelectron spectroscopy provides evidences of oxidized states which may explain these effects.

Keywords

Superconductors Thin films Low temperature Bilayer Ti/TiN 

Notes

Acknowledgements

The authors would like to thank M. Benwadih, O. Renault from CEA-TECH for their help. This work has been partially supported by the LabEx FOCUS ANR-11-LABX-0013.

References

  1. 1.
    K.L. Denis, A. Ali, J. Appel, C.L. Bennett, M.P. Chang, D.T. Chuss, F.A. Colazo, N. Costen, T. Essinger-Hileman, R. Hu, T. Marriage, K. Rostem, K. U-Yen, E.J. Wollack, J. Wollack J Low Temp Phys 184, 668–673 (2016).  https://doi.org/10.1007/s10909-015-1366-y ADSCrossRefGoogle Scholar
  2. 2.
    A.E. Lowitz, E.M. Barrentine, S.R. Golwala, P.T. Timbie, J. Low Temp. Phys. 176, 504–510 (2014).  https://doi.org/10.1007/s10909-014-1133-5 ADSCrossRefGoogle Scholar
  3. 3.
    V. Revéret, L. Rodriguez, P. Agnèse, App. Opt. 49(35), 6726–6736 (2010).  https://doi.org/10.1364/AO.49.006726 ADSCrossRefGoogle Scholar
  4. 4.
    A. Aliane, P. Agnese, C. Pigot, J.L. Sauvageot, F. de Moro, H. Ribot, A. Gasse, V. Szeflinski, Y. Gobil, Nucl Instr Methods Phys Res A 594, 210–214 (2008).  https://doi.org/10.1016/j.nima.2008.06.029 ADSCrossRefGoogle Scholar
  5. 5.
    P.M. Hall, J. Appl. Phys. 36, 2471 (1965).  https://doi.org/10.1063/1.1714513 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Aliane
    • 1
    • 2
  • M. Solana
    • 3
  • W. Rabaud
    • 1
    • 2
  • L. Saminadayar
    • 3
  • P. Agnese
    • 1
    • 2
  • V. Goudon
    • 1
    • 2
  • L. Dussopt
    • 1
    • 2
  • C. Vialle
    • 1
    • 2
  • E. Baghe
    • 1
    • 2
  • S. Pocas
    • 1
    • 2
  • L. Carle
    • 1
    • 2
  • N. Lio Soon Shun
    • 1
    • 2
  • S. Becker
    • 1
    • 2
  • V. Reveret
    • 4
  • L. Rodriguez
    • 4
  • A. Hamelin
    • 1
    • 2
  • A. Poglitsch
    • 4
  • S. Bounissou
    • 4
  • O. Adami
    • 4
  1. 1.CEA, LETIMINATEC CampusGrenobleFrance
  2. 2.Univ. Grenoble AlpesGrenobleFrance
  3. 3.Institut NéelGrenobleFrance
  4. 4.IRFU, CEAUniversité Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations