Skip to main content
Log in

Toward Large Field-of-View High-Resolution X-ray Imaging Spectrometers: Microwave Multiplexed Readout of 28 TES Microcalorimeters

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We performed small-scale demonstrations at GSFC of high-resolution X-ray TES microcalorimeters read out using a microwave SQUID multiplexer. This work is part of our effort to develop detector and readout technologies for future space-based X-ray instruments such as the microcalorimeter spectrometer envisaged for Lynx, a large mission concept under development for the Astro 2020 Decadal Survey. In this paper we describe our experiment, including details of a recently designed, microwave-optimized low-temperature setup that is thermally anchored to the 55 mK stage of our laboratory ADR. Using a ROACH2 FPGA at room temperature, we read out pixels of a GSFC-built detector array via a NIST-built multiplexer chip with Nb coplanar waveguide resonators coupled to rf-SQUIDs. The resonators are spaced 6 MHz apart (at \(\sim \) 5.9 GHz) and have quality factors of \(\sim \) 15,000. In our initial demonstration, we used flux-ramp modulation frequencies of 125 kHz to read out 5 pixels simultaneously and achieved spectral resolutions of 2.8–3.1 eV FWHM at 5.9 keV. Our subsequent work is ongoing: to-date we have achieved a median spectral resolution of 3.4 eV FWHM at 5.9 keV while reading out 28 pixels simultaneously with flux-ramp frequencies of 160 kHz. We present the measured system-level noise and maximum slew rates and briefly describe our future development work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://wwwastro.msfc.nasa.gov/xrs/SWGs/IWG.html.

  2. We use a HEMT from Low-Noise Factory (Model LNF-LNC4_8C) that has a noise temperature of 2.3 K.

  3. We posit that a temperature gradient across the array was established due to particle debris causing heating on the nearby MUX chip. The pixels closest to the MUX chip showed the smallest pulse heights (consistent with an elevated heat-sink temperature) whereas the pixels farthest from the MUX chip showed pulse heights similar to those expected for a heat-sink temperature of 55 mK. Following this experiment, debris was identified on the MUX chip and removed; the pulse-height gradient was not observed on prior or subsequent tests.

References

  1. J.A. Gaskin et al., Proc. SPIE 10397, 103970S (2017). https://doi.org/10.1117/12.2273911

    Article  Google Scholar 

  2. S.J. Smith, S.R. Bandler, R.P. Brekosky, A.-D. Brown, J.A. Chervenak, M.E. Eckart, E.F.-Feliciano, F.M. Finkbeiner, R.L. Kelley, C. A. Kilbourne, F.S. Porter, J.E. Sadleir, IEEE Trans. Appl. Supercond. 19 (2009). https://doi.org/10.1109/TASC.2009.2019557

    Article  ADS  Google Scholar 

  3. J.A.B. Mates, G.C. Hilton, K.D. Irwin, L.R. Vale, K.W. Lehnert, Appl. Phys. Lett. 92 (2008). https://doi.org/10.1063/1.2803852

    Article  ADS  Google Scholar 

  4. J.A.B. Mates, D.T. Becker, D.A. Bennett, B.J. Dober, J.D. Gard, J.P. Hays-Wehle, J.W. Fowler, G.C. Hilton, C.D. Reintsema, D.R. Schmidt, D.S. Swetz, L.R. Vale, J.N. Ullom, Appl. Phys. Lett. 111 (2017). https://doi.org/10.1063/1.4986222

    Article  ADS  Google Scholar 

  5. C.D. Reintsema, J. Beall, W. Doriese, W. Duncan, L. Ferreira, G.C. Hilton, K.D. Irwin, D. Schmidt, J. Ullom, L. Vale, Y. Xu, J. Low Temp. Phys. 151, 927–933 (2007). https://doi.org/10.1007/s10909-008-9769-7

    Article  ADS  Google Scholar 

  6. K.M. Morgan, B.K. Alpert, D.A. Bennett, E.V. Denison, W.B. Doriese, J.W. Fowler, J.D. Gard, G.C. Hilton, K.D. Irwin, Y.I. Joe, G.C. O’Neil, C.D. Reintsema, D.R. Schmidt, J.N. Ullom, D.S. Swetz, Appl. Phys. Lett. 109 (2016). https://doi.org/10.1063/1.4962636

    Article  ADS  Google Scholar 

  7. A. Fleischmann, C. Enss, G.M. Seidel, Metallic magnetic calorimeters, in cryogenic particle detection, Topics in Applied Physics, ed. by C. Enss, vol. 99, pp. 151–216 (2005)

  8. J.A.B. Mates, K.D. Irwin, L.R. Vale, G.C. Hilton, J. Gao, K.W. Lehnert, J. Low Temp. Phys. 167 (2012). https://doi.org/10.1007/s10909-012-0518-6

    Article  ADS  Google Scholar 

  9. O. Noroozian, J.A.B. Mates, D.A. Bennett, J.A. Brevik, J.W. Fowler, J. Gao, G.C. Hilton, R.D. Horansky, K.D. Irwin, Z. Kang, D.R. Schmidt, L.R. Vale, J.N. Ullom, Appl. Phys. Lett. 103 (2013). https://doi.org/10.1063/1.4829156

    Article  ADS  Google Scholar 

  10. C.A. Kilbourne, W.B. Doriese, S.R. Bandler, R.P. Brekosky, A.-D. Brown, J.A. Chervenak, M.E. Eckart, F.M. Finkbeiner, G.C. Hilton, K.D. Irwin, N. Iyomoto, R.L. Kelley, F.S. Porter, C.D. Reintsema, S.J. Smith, J.N. Ullom, Proc. SPIE 7011, 701104–701107 (2008)

    Article  Google Scholar 

  11. E.J. Wassell et al., IEEE Trans. Appl. Supercond. 27(4) (2017). https://doi.org/10.1109/TASC.2016.2633783

    Article  Google Scholar 

  12. S.J. Smith, J.S. Adams, C.N. Bailey, S.R. Bandler, S.E. Busch, J.A. Chervenak, M.E. Eckart, F.M. Finkbeiner, C.A. Kilbourne, R.L. Kelley, S.-J. Lee, J.-P. Porst, F.S. Porter, J.E. Sadleir, J. Appl. Phys. 114 (2013). https://doi.org/10.1063/1.4818917

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, W., Adams, J.S., Bandler, S.R. et al. Toward Large Field-of-View High-Resolution X-ray Imaging Spectrometers: Microwave Multiplexed Readout of 28 TES Microcalorimeters. J Low Temp Phys 193, 258–266 (2018). https://doi.org/10.1007/s10909-018-1917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1917-0

Keywords

Navigation