Skip to main content

Concept Study of Optical Configurations for High-Frequency Telescope for LiteBIRD


The high-frequency telescope for LiteBIRD is designed with refractive and reflective optics. In order to improve sensitivity, this paper suggests the new optical configurations of the HFT which have approximately 7 times larger focal planes than that of the original design. The sensitivities of both the designs are compared, and the requirement of anti-reflection (AR) coating on the lens for the refractive option is derived. We also present the simulation result of a sub-wavelength AR structure on both surfaces of silicon, which shows a band-averaged reflection of 1.1–3.2% at 101–448 GHz.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. M. Hazumi et al., Proceedings of SPIE 8442 (2012).

  2. H. Ishino et al., Proceedings of SPIE 9904 (2016).

  3. H. Sugai et al., Proceedings of SPIE 9904 (2016).

  4. N. Katayama, E. Komatsu, Astrophys. J. 737, 78 (2011).

    ADS  Article  Google Scholar 

  5. A.S. Rahlin et al., Proceedings of SPIE 9153 (2014).

  6. P.A.R. Ade et al., Astron. J. 806, 206 (2015).

    Article  Google Scholar 

  7. J. Bock et al., arXiv:0805.4207

  8. T. Matsumura et al., IEEE Trans. Appl. Supercond. 26, 3 (2016).

    Article  Google Scholar 

  9. J. Hubmayr et al., J. Low Temp. Phys. 167, 904 (2012).

    ADS  Article  Google Scholar 

  10. S. Kashima et al., (in preparation)

  11. S. Padin, Appl. Opt. 49, 3 (2010).

    Article  Google Scholar 

  12. B. Westbrook et al., J. Low Temp. Phys. 184, 74 (2016).

    ADS  Article  Google Scholar 

  13. A. Suzuki, Ph.D. dissertation (University of California, Berkeley, 2013)

  14. A. Gonzalex, Yoshinori Uzawa, IEEE Trans. Antennas Propag. 60, 7 (2012).

    Article  Google Scholar 

  15. T. Matsumura et al., J. Low Temp. Phys. 184, 824 (2016).

    ADS  Article  Google Scholar 

  16. K. Arnold, Ph.D. dissertation (University of California, Berkeley, 2010)


  18. D.M. Pozar, Microwave Engineering (John Wiley & Sons Inc, 1998)

  19. E.B. Grann, M.G. Moharam, D.A. Pommet, J. Opt. Soc. Am. A 11, 10 (1994).

    Article  Google Scholar 

  20. R. Datta et al., Appl. Opt. 52, 36 (2013).

    Article  Google Scholar 

  21. T. Nitta et al., IEEE Trans. Terahertz Sci. Technol. 7, 3 (2017).

    Article  Google Scholar 

  22. P.A. Gallardo et al., Appl. Opt. 56, 10 (2017).

    Article  Google Scholar 

  23. A. Kok et al., IEEE NSS/MIC Conference Record (2009).

  24. Y. Tang et al., IEEE MEMS (2017).

Download references


This work was supported by JSPS/MEXT KAKENHI Grant Numbers 17H01115 and 15H05891.

Author information

Authors and Affiliations


Corresponding author

Correspondence to T. Hasebe.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasebe, T., Kashima, S., Ade, P.A.R. et al. Concept Study of Optical Configurations for High-Frequency Telescope for LiteBIRD. J Low Temp Phys 193, 841–850 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Cosmic microwave background radiation
  • Inflation
  • Satellite
  • Telescope