Multi-parameter Nonlinear Gain Correction of X-ray Transition Edge Sensors for the X-ray Integral Field Unit

  • E. Cucchetti
  • M. E. Eckart
  • P. Peille
  • F. S. Porter
  • F. Pajot
  • E. Pointecouteau
Article

Abstract

With its array of 3840 Transition Edge Sensors (TESs), the Athena X-ray Integral Field Unit (X-IFU) will provide spatially resolved high-resolution spectroscopy (2.5 eV up to 7 keV) from 0.2 to 12 keV, with an absolute energy scale accuracy of 0.4 eV. Slight changes in the TES operating environment can cause significant variations in its energy response function, which may result in systematic errors in the absolute energy scale. We plan to monitor such changes at pixel level via onboard X-ray calibration sources and correct the energy scale accordingly using a linear or quadratic interpolation of gain curves obtained during ground calibration. However, this may not be sufficient to meet the 0.4 eV accuracy required for the X-IFU. In this contribution, we introduce a new two-parameter gain correction technique, based on both the pulse-height estimate of a fiducial line and the baseline value of the pixels. Using gain functions that simulate ground calibration data, we show that this technique can accurately correct deviations in detector gain due to changes in TES operating conditions such as heat sink temperature, bias voltage, thermal radiation loading and linear amplifier gain. We also address potential optimisations of the onboard calibration source and compare the performance of this new technique with those previously used.

Keywords

Calibration Gain correction High-resolution spectroscopy X-ray micro-calorimeters 

References

  1. 1.
    F. Pajot F., D. Barret, T. Lam Trong,, J.-W. den Herder, L. Piro , M. Cappi, J. Low Temp. Phys. This Special Issue (2018)Google Scholar
  2. 2.
    D. Barret, T. Lam Trong, J.-W. den Herder, L. Piro, X. Barcons, J. Huovelin, R. Kelley, J.M. Mas-Hesse, K. Mitsuda, S. Paltani, G. Rauw, A. Rozanska, J. Wilms, M. Barbera, E. Bozzo, M.T. Ceballos, I. Charles, A. Decourchelle, R. den Hartog, J-M. Duval, F. Fiore, F. Gatti, A. Goldwurm, B. Jackson, P. Jonker, C. Kilbourne, C. Macculi, M. Mendez, S. Molendi, P. Orleanski, F. Pajot, E. Pointecouteau, F. Porter, G.W. Pratt, D. Prele, L. Ravera, E. Renotte, J. Schaye, K. Shinozaki, L. Valenziano, J. Vink, N. Webb, N.Y. Yamasaki. Proc. SPIE 9905, 99052F (2016).  https://doi.org/10.1117/12.2232432
  3. 3.
    K. Nandra, D. Barret, X. Barcons, A. Fabian, J.-W. den Herder, L. Piro, M. Watson, C. Adami, J. Aird, J.M. Afonso et al., ArXiv:1306.2307 (2013)
  4. 4.
    Hitomi Collaboration, Nature 535, 117–121 (2016).  https://doi.org/10.1038/nature18627 ADSCrossRefGoogle Scholar
  5. 5.
    S.H. Moseley, R.L. Kelley, R.J. Schoelkopf, A.E. Szymkowiak, D. McCammon, IEEE Trans. Nuclear Sci. 35, 59–64 (1988).  https://doi.org/10.1109/23.12673 ADSCrossRefGoogle Scholar
  6. 6.
    S.R. Bandler, E. Figueroa-Feliciano, N. Iyomoto, R.L. Kelley, C.A. Kilbourne, K.D. Murphy, F.S. Porter, T. Saab, J. Sadleir, Nuclear Inst. Methods Phys. Res. A 559, 817 (2006).  https://doi.org/10.1016/j.nima.2005.12.149 ADSCrossRefGoogle Scholar
  7. 7.
    M.E. Eckart, J.S. Adams, K.R. Boyce, G.V. Brown, M.P. Chiao, R. Fujimoto, D. Haas, J.-W. den Herder, Y. Ishisaki, R.L. Kelley, C.A. Kilbourne, M.A. Leutenegger, D. McCammon, K. Mitsuda, F.S. Porter, K. Sato, M. Sawada, H. Seta, G.A. Sneiderman, A.E. Szymkowiak, Y. Takei, M. Tashiro, M. Tsujimoto, C.P. de Vries, T. Watanabe, S. Yamada , N.Y. Yamasaki, Proc. SPIE  9905, 99053W, (2016).  https://doi.org/10.1117/12.2233053
  8. 8.
    C.P. de Vries, J.W. den Herder, E. Costantini, H. Aarts, P. Lowes, J.S. Kaastra, R. Kelley, K. Gendreau, Z. Arzoumanian, R. Koenecke, D. Haas, S. Paltani, K. Mitsuda, N.Y. Yamasaki, Proc. SPIE 7732, 773213 (2010).  https://doi.org/10.1117/12.855880 CrossRefGoogle Scholar
  9. 9.
    J. Wilms, T. Brand, D. Barret, T. Beuchert, J.-W. den Herder, I. Kreykenbohm, S. Lotti, N. Meidinger, K. Nandra, P. Peille, L. Piro, A. Rau, C. Schmid, R.K. Smith, C. Tenzer, M. Wille, R. Willingale, Proc. SPIE 9144, 91445X-1 (2014).  https://doi.org/10.1117/12.2056347 CrossRefGoogle Scholar
  10. 10.
    F.S. Porter, M.P. Chiao, M.E. Eckart, R. Fujimoto, Y. Ishisaki, R.L. Kelley, C.A. Kilbourne, M.A. Leutenegger, D. McCammon, K. Mitsuda, M. Sawada, A.E. Szymkowiak, Y. Takei, M. Tashiro, M. Tsujimoto, T. Watanabe, S. Yamada, J. Low Temp. Phys. 184, 498 (2016).  https://doi.org/10.1007/s10909-016-1503-2 ADSCrossRefGoogle Scholar
  11. 11.
    L. Ravera, C. Cara, M.T. Ceballos, X. Barcons, D. Barret, R. Clédassous, A. Clénet, B. Cobo, E. Doumayou, R. den Hartog, B. J. van Leuwenn, D. van Loon, J.M. Mas-Hesse, C. Pigot, E. Pointecouteau, SPIE 9144, 91445T (2014).  https://doi.org/10.1117/12.2055750
  12. 12.
    J. Wilms, S.J. Smith, P. Peille, M.T. Ceballos, B. Cobo, T. Dauser, T. Brand, R.H. den Hartog, S.R. Bandler, J. de Plaa, J.-W.A. den Herder, Proc. SPIE 9905, 99056 (2016).  https://doi.org/10.1117/12.2234435 ADSGoogle Scholar
  13. 13.
    S.J. Smith, J.S. Adams, S.R. Bandler, G.L. Betancourt-Martinez, J.A. Chervenak, M.P. Chiao, M.E. Eckart, F.M. Finkbeiner, R.L. Kelley, C.A. Kilbourne, A.R. Miniussi, F.S. Porter, J.E. Sadleir, K. Sakai, N.A. Wakeham, E.J. Wassell, W. Yoon, D.A. Bennett, W.B. Doriese, J.W. Fowler, G.C. Hilton, K.M. Morgan, C.G. Pappas, C.N. Reintsema, D.S. Swetz, J.N. Ullom, K.D. Irwin, H. Akamatsu, L. Gottardi, R. den Hartog, B.D. Jackson, J. van der Kuur, D. Barret, P. Peille, Proc. SPIE, 9905, 99052H-1 (2016)  https://doi.org/10.1117/12.2231749
  14. 14.
    G. Hölzer, M. Fritsch, M. Deutsch, J. Härtwig, E. Förster, Phys. Rev. A 56, 4554–4568 (1997).  https://doi.org/10.1103/PhysRevA.56.4554 ADSCrossRefGoogle Scholar
  15. 15.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IRAP, Université de Toulouse, CNRS, UPS, CNESToulouseFrance
  2. 2.NASA/Goddard Space Flight CenterGreenbeltUSA
  3. 3.CNES ToulouseToulouseFrance

Personalised recommendations