Thermal Links and Microstrip Transmission Lines in SPT-3G Bolometers

Abstract

In this work, we have measured the properties of membrane-suspended bolometer thermal links and microstrip transmission lines in the transition-edge sensor arrays for the third-generation camera for South Pole Telescope (SPT-3G). A promising technique for controlling the end point of the release etch that defines the thermal link has been developed. We have also evaluated the microstrip loss in our detectors by measuring the optical efficiency of detectors with different lengths of microstrip line. The loss tangent is sufficiently low for the use in multi-chronic pixels for cosmic microwave background instruments like SPT-3G.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    B.A. Benson et al., Proc. SPIE 9153, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, vol. 9153, p. 91531P (2014).

  2. 2.

    A.J. Anderson et al., J. Low Temp. Phys. This Special Issue. (2018)

  3. 3.

    D. Hanson et al., Phys. Rev. Lett. 111, 141301 (2013)

    ADS  Article  Google Scholar 

  4. 4.

    W. Hu, T. Okamoto, Astrophys. J. 574, 566 (2002)

    ADS  Article  Google Scholar 

  5. 5.

    K.N. Abazajia et al., Astrophys. Phys. 63, 66 (2015)

    ADS  Article  Google Scholar 

  6. 6.

    K.D. Irwin, Appl. Phys. Lett. 66, 1998 (1995)

    ADS  Article  Google Scholar 

  7. 7.

    A.T. Lee, P.L. Richards, S.W. Nam, B. Cabrera, K.D. Irwin, Appl. Phys. Lett. 69, 1801 (1996)

    ADS  Article  Google Scholar 

  8. 8.

    C.M. Posada et al., Supercond. Sci. Technol. 28, 94002 (2015)

    Article  Google Scholar 

  9. 9.

    C.M. Posada et al., Proc. SPIE 9914, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, vol. 9914, p. 991417 (2016)

  10. 10.

    J. Ding et al., IEEE Trans. Appl. Supercond. 27, 2100204 (2017)

    Article  Google Scholar 

  11. 11.

    C.M. Posada et al., J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1924-1

    Article  Google Scholar 

  12. 12.

    R.H. Duhamel, in U.S. Patent US, 4658262 A (1987)

  13. 13.

    J.M. Edwards, R. O’Brient, A.T. Lee, G.M. Rebeiz, IEEE Trans. Antennas Propag. 60, 4082 (2012)

    ADS  Article  Google Scholar 

  14. 14.

    S. Kumar et al., IEEE Trans. Appl. Supercond. 19, 924 (2009)

    ADS  Article  Google Scholar 

  15. 15.

    A. Suzuki et al., J. Low Temp. Phys. 167, 852 (2012)

    ADS  Article  Google Scholar 

  16. 16.

    R. O’Brient et al., Appl. Phys. Lett. 102, 63506 (2013)

    Article  Google Scholar 

  17. 17.

    C.L. Chang et al., IEEE Trans. Appl. Supercond. 25, 2500105 (2015)

    Google Scholar 

  18. 18.

    A.N. Bender et al., Proc. SPIE Astron. Telesc. + Instrum. 9153, 91531A (2014)

    Google Scholar 

  19. 19.

    J. Avva et al., J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1965-5

    Article  Google Scholar 

  20. 20.

    D. Xu, B. Xiong, G. Wu, Y. Wang, X. Sun, Y. Wang, J. Microelectromech. Syst. 21, 1436 (2012)

    Article  Google Scholar 

  21. 21.

    Z. Pan et al., J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1935-y

    Article  Google Scholar 

  22. 22.

    W.B. Everett et al., J. Low Temp. Phys. This Special Issue. (2018)

  23. 23.

    A.D. Turner et al., Appl. Opt. 40, 4921 (2001)

    ADS  Article  Google Scholar 

  24. 24.

    M. Kenyon, P.K. Day, C.M. Bradford, J.J. Bock, H.G. Leduc, J. Low Temp. Phys. 151, 112 (2008)

    ADS  Article  Google Scholar 

  25. 25.

    K. Rostem, D.M. Glowacka, D.J. Goldie, S. Withington, Proc. SPIE Int. Soc. Opt. Eng. 7020, 70200L (2008)

    ADS  Google Scholar 

  26. 26.

    J.C. Mather, Appl. Opt. 21, 1125 (1985)

    ADS  Article  Google Scholar 

  27. 27.

    G. Wang et al., IEEE Trans. Appl. Supercond. 21, 232 (2011)

    ADS  Article  Google Scholar 

  28. 28.

    K. Rostem et al., J. Appl. Phys. 115, 124508 (2014)

    ADS  Article  Google Scholar 

  29. 29.

    F.W. Carter et al., J. Low Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-1910-7

    Article  Google Scholar 

  30. 30.

    V.G. Yefremenko et al., J. Low Temp. Phys. This Special Issue. (2018)

  31. 31.

    D. Li et al., IEEE Trans. Appl. Supercond. 23, 1501204 (2013)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The South Pole Telescope was supported in part by the National Science Foundation under Grant PLR-1248097, in part by the U.S. Department of Energy, in part by the Argonne National Laboratory and the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02- 06CH11357, in part by the NSF Physics Frontier Center under Grant PHY- 1125897 to the Kavli Institute of Cosmological Physics, University of Chicago, in part by the Kavli Foundation and the Gordon and Betty Moore Foundation under Grant GBMF 947, in part by Fermi National Accelerator Laboratory, a DOE-OS, HEP User Facility managed by the Fermi Research Alliance, LLC, and was supported under Contract No. DE-AC02-07CH11359. NWH acknowledges additional support from the NSF CAREER under Grant AST- 0956135. The McGill authors acknowledge funding from in part by the Natural Sciences and Engineering Research Council of Canada, in part by the Canadian Institute for Advanced Research and in part by the Canada Research Chairs program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Ding.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Ade, P.A.R., Ahmed, Z. et al. Thermal Links and Microstrip Transmission Lines in SPT-3G Bolometers. J Low Temp Phys 193, 712–719 (2018). https://doi.org/10.1007/s10909-018-1907-2

Download citation

Keywords

  • Transition-edge sensor
  • \(\hbox {XeF}_{2}\) etch
  • Microstrip loss
  • Cosmic microwave background
  • South Pole Telescope