Skip to main content
Log in

Effect of Magnetic Inclusions on the Effective Magnetostriction of Bulk Superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A simple model is presented based on the Kim–Anderson model to further investigate the dependence of the effective magnetostriction of magnetic inclusion-superconducting matrix system on both the elastic and magnetic parameters including the elastic modulus, permeability, and volume fraction. The effect of the permeability on the magnetostriction is also obtained by implementing the continuity conditions of displacement and strain at the interface between the inclusion and the matrix through the magnetostriction loop. The results indicate that a stiffer inclusion can decrease the effective magnetostriction no matter whether the inclusion is magnetic or not and a larger effective magnetostriction can be obtained by choosing the matrix with a higher permeability, which gives an explanation about why the composite made from a matrix with a high permeability but a negligibly small magnetostriction yields unexpectedly low magnetostriction. Of particular interest is that in a certain range the effective magnetostriction of composites can be enhanced until it is saturated by increasing the permeability of matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Tsui, R. Mahmoud, E. Surrey, D.P. Hampshire, IEEE Trans. Appl. Supercond. 26, 6900204 (2016)

    Article  Google Scholar 

  2. S. Cavdar, N. Kol, H. Koralay, H. Koralay, O. Ozturk, E. Asikuzun, A.T. Tasci, Cryogenics 73, 1 (2016)

    Article  ADS  Google Scholar 

  3. S.S. Ghosh, Y. Xin, Z.Q. Mao, E. Manousakis, Cond. Mat. Mtrl. Sci. 1611, 07130 (2016)

    Google Scholar 

  4. W.J. Feng, P. Ma, Q.H. Li, J.X. Liu, J. Supercond. Nov. Magn. 26, 539 (2013)

    Article  Google Scholar 

  5. H. Ikuta, N. Hirota, Y. Nakayama, K. Kishio, K. Kitazawa, Phys. Rev. Lett. 70, 2166 (1993)

    Article  ADS  Google Scholar 

  6. A. Nabiałek, H. Szymczak, V.A. Sirenko, A.I. D’yachenko, J. Appl. Phys. 84, 3770 (1998)

    Article  ADS  Google Scholar 

  7. T.H. Johansen, Phys. Rev. B 59, 11187 (1999)

    Article  ADS  Google Scholar 

  8. T.H. Johansen, Phys. Rev. B 60, 9690 (1999)

    Article  ADS  Google Scholar 

  9. T.H. Johansen, Supercond. Sci. Technol. 13, R121 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  10. W.J. Feng, X. Han, P. Ma, J. Appl. Phys. 110, 063917 (2011)

    Article  ADS  Google Scholar 

  11. H.D. Yong, Z. Jing, Y.H. Zhou, Physica C 483, 51 (2012)

    Article  ADS  Google Scholar 

  12. X.Y. Li, L. Jiang, H. Wu, Z.W. Gao, Physica C 534, 50 (2017)

    Article  ADS  Google Scholar 

  13. H.D. Yong, Y.H. Zhou, J. Appl. Phys. 104, 043907 (2008)

    Article  ADS  Google Scholar 

  14. A.H. Aly, A. Mehaney, S.A. El-Naggar, J. Supercond. Nov. Magn. 11, 1 (2017)

    Google Scholar 

  15. Y. Fasano, J.A. Herbsommer, F. DeLaCruz, F. Pardo, P.L. Gammel, E. Bucher, D.J. Bishop, Phys. Rev. B 60, 11187 (1999)

    Article  Google Scholar 

  16. M.G. Blamire, R.B. Dinner, S.C. Wimbush, J.L. MacManus-Driscoll, Supercond. Sci. Technol. 22, 025017 (2009)

    Article  ADS  Google Scholar 

  17. C.G. Huang, H.D. Yong, Y.H. Zhou, J. Appl. Phys. 114, 033913 (2013)

    Article  ADS  Google Scholar 

  18. C.G. Huang, Y.H. Zhou, J. Appl. Phys. 115, 033904 (2014)

    Article  ADS  Google Scholar 

  19. C.G. Huang, J. Liu, J. Appl. Phys. 121, 023905 (2014)

    Article  ADS  Google Scholar 

  20. Y.F. Zhao, B.C. Pan, J. Low Temp. Phys. 190, 213 (2018)

    Article  ADS  Google Scholar 

  21. Y.I. Jiao, L. Xiao, M.H. Zheng, Q.Z. Yan, K.X. Xu, Conf. Ser. 234, 012020 (2010)

    Article  Google Scholar 

  22. Z.W. Gao, Z.Y. Zheng, IEEE Trans. Appl. Supercond. 26, 8400605 (2016)

    Google Scholar 

  23. F. Xue, Z.X. Zhang, J. Zeng, X.F. Gou, J. Supercond. Nov. Magn. 29, 2023 (2016)

    Article  Google Scholar 

  24. L. Ceniga, P. Diko, Physica C 467, 179 (2007)

    Article  ADS  Google Scholar 

  25. Y.P. Wan, Z. Zhong, D.N. Fang, J. Appl. Phys. 95, 3099 (2004)

    Article  ADS  Google Scholar 

  26. Z. Koziol, J.J.M. Franse, P.F. de Châtel, A.A. Menovsky, Phys. Rev. B 50, 15978 (1994)

    Article  ADS  Google Scholar 

  27. Z. Koziol, R.A. Dunlap, J. Appl. Phys. 79, 4679 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the fund of Natural Science Foundation of China (No. 11662009), Natural Science Foundation of Gansu Province (No. 17JR5RA129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Pan, B. & Liu, Z. Effect of Magnetic Inclusions on the Effective Magnetostriction of Bulk Superconductors. J Low Temp Phys 192, 88–99 (2018). https://doi.org/10.1007/s10909-018-1896-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1896-1

Keywords

Navigation