Skip to main content
Log in

Monte Carlo Study of Magnetic Properties of Mixed Spins in a Fullerene X30Y30-Like Structure

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, inspiring form of the fullerene-C60 structures, we study the mixed \( X_{30} Y_{30} \) fullerene-like structure and investigate its magnetic properties. In a such a structure, the carbons are assumed to be replaced by magnetic atoms having spin moments σ = 1/2 and S = 1. Firstly, we elaborate the ground-state phase diagrams in different physical parameter planes. In a second stage, we investigate the exchange coupling interaction effects in the absence or presence of both external magnetic and crystal fields. Using the Monte Carlo method, we carried out a study of the system magnetic properties and the thermal behavior of such a system for the ferromagnetic case. It is found that the critical temperature increases when increasing the coupling exchange interactions. On the other hand, the coercive magnetic field increases also when increasing the coupling exchange interactions. However, this physical parameter decreases when increasing the reduced temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  2. M.I. Katsnelson, Phys. Rev. B 76, 073411 (2007)

    Article  ADS  Google Scholar 

  3. H. Behera, G. Mukhopadhyay, AIP Conf. Proc. 1313, 152 (2010)

    Article  ADS  Google Scholar 

  4. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  5. K. Takeda, K. Shiraishi, Phys. Rev. B 68(50), 14916 (1994)

    Article  ADS  Google Scholar 

  6. Y. Zhang et al., Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  7. T. Suzuki, Y. Yokomizo, Phys. E 42, 481 (2010)

    Article  Google Scholar 

  8. K.S. Novoselov et al., Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  9. M. Drillon, E. Coronado, D. Beltran, R. Georges, J. Chem. Phys. 79, 449 (1983)

    Google Scholar 

  10. M. Grimsditch, P. Loubeyre, A. Polian, Phys. Rev. B 33, 7192 (1986)

    Article  ADS  Google Scholar 

  11. D.F. Styer, M.K. Phani, J.L. Lebowitz, Phys. Rev. B 34, 3361 (1986)

    Article  ADS  Google Scholar 

  12. H.L. Scott, Phys. Rev. A 37, 263 (1988)

    Article  ADS  Google Scholar 

  13. J.A. Barker, Phys. Rev. Lett. 57, 230 (1986)

    Article  ADS  Google Scholar 

  14. Z. Onyszkiewicz, Phys. Lett. A 68(2939), 113 (1978)

    Article  ADS  Google Scholar 

  15. D. Yin, Y. Yang, Y. Yang, H. Fang, Carbon 102, 273 (2016)

    Article  Google Scholar 

  16. F. Torrens, G. Castellano, J. Chem. Chem. Eng. 7, 1026 (2013)

    Google Scholar 

  17. Q. Zhu, Y. Zhang, Z. Liu, X. Zhou, X. Zhang, L. Zeng, Appl. Surf. Sci. 356, 875 (2015)

    Article  ADS  Google Scholar 

  18. J. Shi, L. Wang, J. Gao, Y. Liu, J. Zhang, R. Ma, R. Liu, Z. Zhang, Biomaterials 35, 5771 (2014)

    Article  Google Scholar 

  19. R. Snovski, J. Grinblat, S. Margel, J. Magn. Magn. Mater. 324, 90 (2012)

    Article  ADS  Google Scholar 

  20. X. Zhang, S. Mizukami, Q. Ma, T. Kubota, M. Oogane, H. Naganuma, Y. Ando, T. Miyazaki, J. Appl. Phys. 115, 172608 (2014)

    Article  ADS  Google Scholar 

  21. K. Yoshida, I. Hamada, S. Sakata, A. Umeno, M. Tsukada, K. Hirakawa, Nano Lett. 13, 481 (2013)

    Article  ADS  Google Scholar 

  22. X. Zhang, S. Mizukami, T. Kubota, Q. Ma, M. Oogane, H. Naganuma, Y. Ando, T. Miyazaki, Nat. Commun. 4, 1392 (2013)

    Article  ADS  Google Scholar 

  23. T. Tran, T.Q. Le, J.G. Sanderink, W.G. van der Wiel, M.P. de Jong, Adv. Funct. Mater. 22, 1180 (2012)

    Article  Google Scholar 

  24. M. Gobbi, F. Golmar, R. Llopis, F. Casanova, L.E. Hueso, Adv. Mater. 23, 1609 (2011)

    Article  Google Scholar 

  25. D.M. Guldi, B.M. Illescas, C.M. Atienza, M. Wielopolskia, N. Martin, Chem. Soc. Rev. 38(2939), 1587 (2009)

    Article  Google Scholar 

  26. M. Stengel, A.D. Vita, A. Baldereschi, Phys. Rev. Lett. 91, 166101 (2003)

    Article  ADS  Google Scholar 

  27. W.W. Pai, C.L. Hsu, M.C. Lin, K.C. Lin, T.B. Tang, Phys. Rev. B 69, 125405 (2004)

    Article  ADS  Google Scholar 

  28. A. Mhirech, S. Aouini, A. Alaoui-Ismaili, L. Bahmad, J. Supercond. Nov. Magn. 30(4), 925–930 (2017). https://doi.org/10.1007/s10948-016-3867-6

    Article  Google Scholar 

  29. S. Aouini, S. Ziti, H. Labrim, L. Bahmad, J. Supercond. Nov. Magn. 30(6), 1557–1563 (2017). https://doi.org/10.1007/s10948-016-3932-1

    Article  Google Scholar 

  30. S. Aouini, S. Ziti, H. Labrim, L. Bahmad, J. Supercond. Nov. Magn. 11, 1–6 (2017). https://doi.org/10.1007/s10948-017-4282-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mhirech, A., Aouini, S., Alaoui-Ismaili, A. et al. Monte Carlo Study of Magnetic Properties of Mixed Spins in a Fullerene X30Y30-Like Structure. J Low Temp Phys 192, 65–74 (2018). https://doi.org/10.1007/s10909-018-1890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1890-7

Keywords

Navigation