Advertisement

Journal of Low Temperature Physics

, Volume 191, Issue 3–4, pp 228–241 | Cite as

Development of Pulse Tube Cryocoolers at SITP for Space Application

  • Ankuo Zhang
  • Yinong Wu
  • Shaoshuai Liu
  • Huiqin Yu
  • Baoyu Yang
Article
  • 111 Downloads

Abstract

Over the last 10 years, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, has developed very high-efficiency pulse tube cryocoolers (PTCs) for aerospace applications. These PTCs can provide cooling power from milliwatt scale to tens of watts over a range of temperatures from 30 to 170 K and can be used to cool a variety of detectors in space applications (such as quantum interference devices, radiometers and ocean color sensors) that must operate at a specific cryogenic temperature to increase the signal-to-noise ratio, sensitivity and optical resolution. This paper reviews the development of single-stage PTCs over a range of weights from 1.6 to 12 kg that offer cooling powers at the cold temperature range from 40 to 170 K. In addition, a two-stage 30 K-PTC is under development.

Keywords

Pulse tube cryocooler Low temperature Infrared Space application 

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 51741610) and the Natural Science Foundation of Shanghai-China (No. 16ZR1441500).

References

  1. 1.
    A. Rogalski, Recent progress in infrared detector technologies. Infrared Phys. Technol. 54, 136–154 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    N. Rando, D. Lumb, M. Bavdaz et al., Space science applications of cryogenic detectors. Nucl. Instrum. Methods Phys. Res. A 522, 62–68 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Ray Radebaugh, Refrigerators for aircraft superconducting generators and motors. Adv. Cryog. Eng. 1434, 171–182 (2012)Google Scholar
  4. 4.
    R.G. Ross Jr., R.F. Boyle, An Overview of NASA Space Cryocooler Programs—2006. Cryocoolers 14 (ICC Press, Boulder, CO, 2007), pp. 1–10Google Scholar
  5. 5.
    T. Nguyen, G. Toma, J. Raab, HEC pulse tube cooler performance enhancement. Int. Refrig. Conf. 17, 79–83 (2012)Google Scholar
  6. 6.
    J. Raab, E. Tward, Northrop Grumman aerospace systems cryocooler overview. Cryogenics 50, 572–581 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    D. Durand, E. Tward, G. Toma et al., Efficient High Capacity Space Microcooler. Cryocoolers 18 (ICC Press, Boulder, CO, 2014), pp. 59–64Google Scholar
  8. 8.
    T. Nast, J. Olson, P. Champagne et al., Overview of Lockheed Martin cryocoolers. Cryogenics 46, 164–168 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    J.R. Olson, P. Champagne, E. Roth et al., Very hgih capacity aerospace cryocooler. Adv. Cryog. Eng. 1434, 161–167 (2012)Google Scholar
  10. 10.
    J.R. Olson, P. Champagne, E. Roth et al., Coaxial Pulse Tube Microcryocooler. Cryocoolers 18 (ICC Press, Boulder, CO, 2014), pp. 51–57Google Scholar
  11. 11.
    W.v.d. Groep, J.C. Mullie, D. Willems et al., Developments on a wide range of coaxial Pulse-Tube Refrigerators at THALES Cryogenics, in Proceedings of ICEC. (2008), pp. 123–128Google Scholar
  12. 12.
    W.V.D. Groep, J.C. Mullie, D. Willems et al., Development of a 15W Coaxial Pulse Tube Cooler. Cryocoolers 15 (ICC Press, Boulder, CO, 2009), pp. 157–165Google Scholar
  13. 13.
    A.K. Zhang, X. Chen, Y.N. Wu et al., Study on a 10W/90 K in-line pulse tube refrigerator. Cryogenics 52, 800–804 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    A.K. Zhang, S.S. Liu, H.F. Zhu et al., Experimental study on an aerospace Stirling type pulse tube refrigerator with 3W@80K. Cryog. Chin. 5, 30–32 (2016)Google Scholar
  15. 15.
    Yu. Huiqin, Wu Yinong, Lei Ding et al., An efficient miniature 120 Hz pulse tube cryocooler using high porosity regenerator material. Cryogenics 88, 22–28 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    A.K. Zhang, Y.N. Wu, H.Q. Yu et al., Study on miniaturized pulse tube cryocoolers. in Proceedings of the China Engineering Thermal Physics Annual Conference. (Guangzhou, China, 2016)Google Scholar
  17. 17.
    A.K. Zhang, Y.N. Wu, S.S. Liu et al., Effect of impedance on a compressor driving pulse tube refrigerator. Appl. Therm. Eng. 124, 688–694 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    A.K. Zhang, Y.N. Wu, S.S. Liu et al., Experiment Study of a Coaxial Pulse Tube Cryocooler. Cryocoolers 18 (ICC Press, Boulder, CO, 2014), pp. 151–154Google Scholar
  19. 19.
    A.K. Zhang, Y.N. Wu, S.S. Liu et al., Simulation and experimental study of a 6W@60K PTC. J. Eng. Thermaphys. 5, 945–948 (2015)Google Scholar
  20. 20.
    S.S. Liu, X. Chen, A.K. Zhang et al., Impact of coiled type inertance tube on performance of pulse tube refrigerator. Appl. Thermal Eng. 107, 63–69 (2016)CrossRefGoogle Scholar
  21. 21.
    S.S. Liu, X. Chen, A.K. Zhang et al., Investigation on phase shifter of a 10W/70K inertance. Int. J. Refrig. 74, 450–457 (2017)CrossRefGoogle Scholar
  22. 22.
    A.K. Zhang, Y.N. Wu, S.S. Liu et al., High-efficiency 3 W/40 K single-stage pulse tube cryocooler for space application. Cryogenics 90, 41–46 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    Y.Y. Jiang, Research on Key Technology of 20K Cryogenic Temperature Two-Stage Pulse Tube Cryocooler. (Doctoral Thesis, University of Chinese Academy of Sciences, 2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ankuo Zhang
    • 1
  • Yinong Wu
    • 1
  • Shaoshuai Liu
    • 1
  • Huiqin Yu
    • 1
  • Baoyu Yang
    • 1
  1. 1.Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations