Skip to main content

Magnetometry with Low-Resistance Proximity Josephson Junction

Abstract

We characterize a niobium-based superconducting quantum interference proximity transistor (Nb-SQUIPT) and its key constituent formed by a Nb–Cu–Nb SNS weak link. The Nb-SQUIPT and SNS devices are fabricated simultaneously in two separate lithography and deposition steps, relying on Ar ion cleaning of the Nb contact surfaces. The quality of the Nb–Cu interface is characterized by measuring the temperature-dependent equilibrium critical supercurrent of the SNS junction. In the Nb-SQUIPT device, we observe a maximum flux-to-current transfer function value of about \(55\;\mathrm {nA}/\mathrm {\Phi }_0\) in the sub-gap regime of bias voltages. This results in suppression of power dissipation down to a few fW. Low-bias operation of the device with a relatively low probe junction resistance decreases the dissipation by up to two orders of magnitude compared to a conventional device based on an Al–Cu–Al SNS junction and an Al tunnel probe (Al-SQUIPT).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. F. Giazotto, J.T. Peltonen, M. Meschke, J.P. Pekola, Nat. Phys. 6, 254 (2010)

    Article  Google Scholar 

  2. P.G. de Gennes, Rev. Mod. Phys. 36, 225 (1964)

    Article  ADS  Google Scholar 

  3. P.G. de Gennes, Superconductivity of Metals and Alloys (W.A. Benjamin, San Francisco, 1966)

    MATH  Google Scholar 

  4. W. Belzig, F.K. Wilhelm, C. Bruder, G. Schön, A.D. Zaikin, Superlatt. Microstruct. 25, 1251 (1999)

    Article  ADS  Google Scholar 

  5. C.J. Lambert, R. Raimondi, J. Phys. Condens. Matter 10, 901 (1998)

    Article  ADS  Google Scholar 

  6. B. Pannetier, H. Courtois, J. Low Temp. Phys. 118, 599 (2000)

    Article  ADS  Google Scholar 

  7. A.I. Buzdin, Rev. Mod. Phys. 77, 935 (2005)

    Article  ADS  Google Scholar 

  8. W. Belzig, C. Bruder, G. Schön, Phys. Rev. B 54, 9443 (1996)

    Article  ADS  Google Scholar 

  9. S. Gueron, H. Pothier, Norman O. Birge, D. Esteve, M.H. Devoret, Phys. Rev. Lett. 77, 3025 (1996)

    Article  ADS  Google Scholar 

  10. H. le Sueur, P. Joyez, H. Pothier, C. Urbina, D. Esteve, Phys. Rev. Lett. 100, 197002 (2008)

    Article  ADS  Google Scholar 

  11. V.T. Petrashov, V.N. Antonov, P. Delsing, T. Claeson, JETP Lett. 60, 606 (1994)

    ADS  Google Scholar 

  12. V.T. Petrashov, V.N. Antonov, P. Delsing, T. Claeson, Phys. Rev. Lett. 74, 5268 (1995)

    Article  ADS  Google Scholar 

  13. W. Belzig, R. Shaikhaidarov, V.V. Petrashov, YuV Nazarov, Phys. Rev. B 66, 220505 (2002)

    Article  ADS  Google Scholar 

  14. F. Zhou, P. Charlat, B. Spivak, B. Pannetier, J. Low Temp. Phys. 110, 841 (1998)

    Article  ADS  Google Scholar 

  15. J. Clarke, A.I. Braginski (eds.), The SQUID Handbook: Applications of SQUIDs and SQUID Systems, vol. I (Wiley, Wienheim, 2004)

    Google Scholar 

  16. M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)

    Google Scholar 

  17. K.K. Likharev, Dynamics of Josephson Junctions and Circuits, 1st edn. (Gordon and Breach, Philadelphia, 1986)

    Google Scholar 

  18. M.J. Martínez-Pérez, D. Koelle, Phys. Sci. Rev. 2, 8 (2017)

    Google Scholar 

  19. C. Granata, A. Vettoliere, Phys. Rep. 614, 1 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  20. C.P. Foley, H. Hilgenkamp, Supercond. Sci. Technol. 22, 1 (2009)

    Article  Google Scholar 

  21. L. Hao, J.C. Macfarlane, S.K.H. Lam, C.P. Foley, P. Josephs-Franks, J.C. Gallop, I.E.E.E. Trans, Appl. Supercond. 15, 514 (2005)

    Article  Google Scholar 

  22. L. Hao, J.C. Macfarlane, J.C. Gallop, D. Cox, P. Joseph-Franks, D. Hutson, J. Chen, I.E.E.E. Trans, Instrum. Meas. 56, 392–395 (2007)

    Article  Google Scholar 

  23. F. Giazotto, F. Taddei, Phys. Rev. B 84, 214502 (2011)

    Article  ADS  Google Scholar 

  24. M. Meschke, J.T. Peltonen, J.P. Pekola, F. Giazotto, Phys. Rev. B 84, 214514 (2011)

    Article  ADS  Google Scholar 

  25. R.N. Jabdaraghi, M. Meschke, J.P. Pekola, Appl. Phys. Lett. 104, 082601 (2014)

    Article  ADS  Google Scholar 

  26. A. Ronzani, C. Altimiras, F. Giazotto, Phys. Rev. Appl. 2, 024005 (2014)

    Article  ADS  Google Scholar 

  27. R.N. Jabdaraghi, J.T. Peltonen, O.-P. Saira, J.P. Pekola, Appl. Phys. Lett. 108, 042604 (2016)

    Article  ADS  Google Scholar 

  28. R.N. Jabdaraghi, D.S. Golubev, J.P. Pekola, J.T. Peltonen, Sci. Rep. 7, 8011 (2017)

    Article  ADS  Google Scholar 

  29. N. Ligato, G. Marchegiani, P. Virtanen, E. Strambini, F. Giazotto, Sci. Rep. 7, 8010 (2017)

    Article  ADS  Google Scholar 

  30. A. Ronzani, S. D’Ambrosio, R. Virtanen, F. Giazotto, C. Altimiras, Phys. Rev. B 96, 214517 (2017)

    Article  ADS  Google Scholar 

  31. S. D’Ambrosio, M. Meissner, C. Blanc, A. Ronzani, F. Giazotto, Appl. Phys. Lett. 107, 113110 (2015)

    Article  ADS  Google Scholar 

  32. G.J. Dolan, Appl. Phys. Lett. 31, 337 (1977)

    Article  ADS  Google Scholar 

  33. J.P. Pekola, J.P. Kauppinen, Cryogenics 34, 843 (1994)

    Article  ADS  Google Scholar 

  34. F. Giazotto, T.T. Heikkilä, G. Pepe, P. Helistö, A. Luukanen, J.P. Pekola, Appl. Phys. Lett. 92, 162507 (2008)

    Article  ADS  Google Scholar 

  35. Y. Blum, A. Tsukernik, M. Karpovski, A. Palevski, Phys. Rev. B 70, 214501 (2004)

    Article  ADS  Google Scholar 

  36. P. Dubos, H. Courtois, B. Pannetier, F.K. Wilhelm, A.D. Zaikin, G. Schön, Phys. Rev. B 63, 064502 (2001)

    Article  ADS  Google Scholar 

  37. V. Ambegaokar, A. Baratoff, Phys. Rev. Lett. 10, 486 (1963)

    Article  ADS  Google Scholar 

  38. M. Ternes, W.D. Schneider, J.C. Cuevas, C.P. Lutz, C.F. Hirjibehedin, A.J. Heinrich, Phys. Rev. B 74, 132501 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work has been supported by the Academy of Finland (Project Nos. 284594, 275167, and 312057). We acknowledge Micronova Nanofabrication Centre of OtaNano research infrastructure for providing the processing facilities, and for the sputtered Nb films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Jabdaraghi.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabdaraghi, R.N., Peltonen, J.T., Golubev, D.S. et al. Magnetometry with Low-Resistance Proximity Josephson Junction. J Low Temp Phys 191, 344–353 (2018). https://doi.org/10.1007/s10909-018-1863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1863-x

Keywords