Skip to main content
Log in

High-Precision Displacement Sensing of Monolithic Piezoelectric Disk Resonators Using a Single-Electron Transistor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A single-electron transistor (SET) can be used as an extremely sensitive charge detector. Mechanical displacements can be converted into charge, and hence, SETs can become sensitive detectors of mechanical oscillations. For studying small-energy oscillations, an important approach to realize the mechanical resonators is to use piezoelectric materials. Besides coupling to traditional electric circuitry, the strain-generated piezoelectric charge allows for measuring ultrasmall oscillations via SET detection. Here, we explore the usage of SETs to detect the shear-mode oscillations of a 6-mm-diameter quartz disk resonator with a resonance frequency around 9 MHz. We measure the mechanical oscillations using either a conventional DC SET, or use the SET as a homodyne or heterodyne mixer, or finally, as a radio-frequency single-electron transistor (RF-SET). The RF-SET readout is shown to be the most sensitive method, allowing us to measure mechanical displacement amplitudes below \(10^{-13}\) m. We conclude that a detection based on a SET offers a potential to reach the sensitivity at the quantum limit of the mechanical vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.A. Sidles, J.L. Garbini, K.J. Bruland, D. Rugar, O. Züger, S. Hoen, C.S. Yannoni, Rev. Mod. Phys. 67, 249 (1995). https://link.aps.org/doi/10.1103/RevModPhys.67.249

  2. T.A. Palomaki, J.D. Teufel, R.W. Simmonds, K.W. Lehnert, Science 342(6159), 710 (2013). https://doi.org/10.1126/science.1244563. http://science.sciencemag.org/content/342/6159/710

  3. E.E. Wollman, C.U. Lei, A.J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A.A. Clerk, K.C. Schwab, Science 349(6251), 952 (2015). https://doi.org/10.1126/science.aac5138. http://science.sciencemag.org/content/349/6251/952

  4. J.M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel, M.A. Sillanpää, Phys. Rev. Lett. 115, 243601 (2015). https://link.aps.org/doi/10.1103/PhysRevLett.115.243601

  5. F. Lecocq, J.B. Clark, R.W. Simmonds, J. Aumentado, J.D. Teufel, Phys. Rev. X 5, 041037 (2015). https://link.aps.org/doi/10.1103/PhysRevX.5.041037

  6. A.N. Cleland, M.L. Roukes, Appl. Phys. Lett. 69(18), 2653 (1996). https://doi.org/10.1063/1.117548

    Article  ADS  Google Scholar 

  7. A. Cleland, M. Roukes, Sens. Actuators A Phys. 72(3), 256 (1999)

    Article  Google Scholar 

  8. P. Mohanty, D.A. Harrington, M.L. Roukes, Physica B Condens. Matter 284-288, 2143 (2000). http://www.sciencedirect.com/science/article/pii/S092145269902997X

  9. T.F. Li, Y.A. Pashkin, O. Astafiev, Y. Nakamura, J.S. Tsai, H. Im, Appl. Phys. Lett. 92, 043112 (2008)

    Article  ADS  Google Scholar 

  10. D.W. Carr, S. Evoy, L. Sekaric, H.G. Craighead, J.M. Parpia, Appl. Phys. Lett. 75(7), 920 (1999). https://doi.org/10.1063/1.124554

    Article  ADS  Google Scholar 

  11. H. Kim, D.H. Shin, K. McAllister, M. Seo, S. Lee, I.S. Kang, B.H. Park, E.E.B. Campbell, S.W. Lee, ACS Appl. Mater. Interfaces 9(8), 7282 (2017). https://doi.org/10.1021/acsami.6b16278

    Article  Google Scholar 

  12. G.A. Steele, A.K. Hüttel, B. Witkamp, M. Poot, H.B. Meerwaldt, L.P. Kouwenhoven, H.S.J. van der Zant, Science 325(5944), 1103 (2009). http://science.sciencemag.org/content/325/5944/1103

  13. B. Lassagne, Y. Tarakanov, J. Kinaret, D. Garcia-Sanchez, A. Bachtold, Science 325(5944), 1107 (2009). http://science.sciencemag.org/content/325/5944/1107

  14. P.F. Cohadon, A. Heidmann, M. Pinard, Phys. Rev. Lett. 83, 3174 (1999)

    Article  ADS  Google Scholar 

  15. S. Gigan, H.R. Böhm, M. Paternostro, F. Blaser, G. Langer, J.B. Hertzberg, K.C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger, Nature 444, 67 (2006)

    Article  ADS  Google Scholar 

  16. O. Arcizet, P.F. Cohadon, T. Briant, M. Pinard, A. Heidmann, Nature 444, 71 (2006)

    Article  ADS  Google Scholar 

  17. C.A. Regal, J.D. Teufel, K.W. Lehnert, Nat. Phys. 4, 555 (2008)

    Article  Google Scholar 

  18. D.J. Flees, S. Han, J.E. Lukens, Phys. Rev. Lett. 78, 4817 (1997). https://link.aps.org/doi/10.1103/PhysRevLett.78.4817

  19. P. Joyez, P. Lafarge, A. Filipe, D. Esteve, M.H. Devoret, Phys. Rev. Lett. 72, 2458 (1994). https://link.aps.org/doi/10.1103/PhysRevLett.72.2458

  20. R.G. Knobel, A.N. Cleland, Nature 424(6946), 291 (2003). https://doi.org/10.1038/nature01773

    Article  ADS  Google Scholar 

  21. M.D. LaHaye, O. Buu, B. Camarota, K.C. Schwab, Science 304(5667), 74 (2004). https://doi.org/10.1126/science.1094419. http://science.sciencemag.org/content/304/5667/74

  22. Y.A. Pashkin, T.F. Li, J.P. Pekola, O. Astafiev, D.A. Knyazev, F. Hoehne, H. Im, Y. Nakamura, J.S. Tsai, Appl. Phys. Lett. 96(26), 263513 (2010). https://doi.org/10.1063/1.3455880

    Article  ADS  Google Scholar 

  23. M.D. LaHaye, J. Suh, P.M. Echternach, K.C. Schwab, M.L. Roukes, Nature 459, 960 (2009)

    Article  ADS  Google Scholar 

  24. A.D. O’Connell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J.M. Martinis, A.N. Cleland, Nature 464, 697 (2010)

    Article  ADS  Google Scholar 

  25. J.M. Pirkkalainen, S.U. Cho, J. Li, G.S. Paraoanu, P.J. Hakonen, M.A. Sillanpää, Nature 494, 211 (2013)

    Article  ADS  Google Scholar 

  26. J.M. Pirkkalainen, S.U. Cho, F. Massel, J. Tuorila, T.T. Heikkila, P.J. Hakonen, M.A. Sillanpää, Nature Commun. 6, 6981 (2015)

    Article  Google Scholar 

  27. M.V. Gustafsson, T. Aref, A.F. Kockum, M.K. Ekström, G. Johansson, P. Delsing, Science 346, 207 (2014)

    Article  ADS  Google Scholar 

  28. F. Rouxinol, Y. Hao, F. Brito, A.O. Caldeira, E.K. Irish, M.D. LaHaye, Nanotechnology 27(36), 364003 (2016). http://stacks.iop.org/0957-4484/27/i=36/a=364003

  29. J.T. Santos, J. Li, J. Ilves, C.F. Ockeloen-Korppi, M. Sillanpää, New J. Phys. 19(10), 103014 (2017). http://stacks.iop.org/1367-2630/19/i=10/a=103014

  30. M. Woolley, M. Emzir, G. Milburn, M. Jerger, M. Goryachev, M. Tobar, A. Fedorov, Phys. Rev. B 93, 224518 (2016)

    Article  ADS  Google Scholar 

  31. R. Knobel, A.N. Cleland, Appl. Phys. Lett. 81(12), 2258 (2002). https://doi.org/10.1063/1.1507616

    Article  ADS  Google Scholar 

  32. J.A. Sidles, Appl. Phys. Lett. 58(24), 2854 (1991). https://doi.org/10.1063/1.104757

    Article  ADS  Google Scholar 

  33. J. Pettersson, P. Wahlgren, P. Delsing, D.B. Haviland, T. Claeson, N. Rorsman, H. Zirath, Phys. Rev. B 53, R13272 (1996). https://link.aps.org/doi/10.1103/PhysRevB.53.R13272

  34. E.H. Visscher, J. Lindeman, S.M. Verbrugh, P. Hadley, J.E. Mooij, W. van der Vleuten, Appl. Phys. Lett. 68(14), 2014 (1996). https://doi.org/10.1063/1.115622

    Article  ADS  Google Scholar 

  35. R. Knobel, C.S. Yung, A.N. Cleland, Appl. Phys. Lett. 81(3), 532 (2002). https://doi.org/10.1063/1.1493221

    Article  ADS  Google Scholar 

  36. M.T. Abuelma’atti, Analog Integr. Circuits Signal Process. 61(3), 223 (2009). https://doi.org/10.1007/s10470-009-9304-z

    Article  Google Scholar 

  37. R.J. Schoelkopf, P. Wahlgren, A.A. Kozhevnikov, P. Delsing, D.E. Prober, Science 280(5367), 1238 (1998). http://science.sciencemag.org/content/280/5367/1238

  38. M.H. Devoret, R.J. Schoelkopf, Nature 406(6799), 1039 (2000). https://doi.org/10.1038/35023253

    Article  Google Scholar 

  39. M. Goryachev, D.L. Creedon, E.N. Ivanov, S. Galliou, R. Bourquin, M.E. Tobar, Appl. Phys. Lett. 100(24), 243504 (2012)

    Article  ADS  Google Scholar 

  40. M. Blencowe, M. Wybourne, Appl. Phys. Lett. 77, 3845 (2000)

    Article  ADS  Google Scholar 

  41. H. Brenning, S. Kafanov, T. Duty, S. Kubatkin, P. Delsing, J. Appl. Phys. 100(11), 114321 (2006). http://aip.scitation.org/doi/abs/10.1063/1.2388134

  42. C. Macklin, C. Macklin, K. OBrien, D. Hover, M.E. Schwartz, V. Bolkhovsky, X. Zhang, W.D. Oliver, I. Siddiqi, Science 350, 307 (2015)

    Article  ADS  Google Scholar 

  43. M. Onoe, in Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005. (IEEE, 2005), pp. 433–441

Download references

Acknowledgements

This work was supported by the Academy of Finland (contract 250280, CoE LTQ, 275245), the European Research Council (615755-CAVITYQPD), the Centre for Quantum Engineering at Aalto University, and the Finnish Cultural Foundation (Central Fund 00160903). The work benefited from the facilities at the OtaNano—Micronova Nanofabrication Center and at the Low Temperature Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Santos, J.T. & Sillanpää, M.A. High-Precision Displacement Sensing of Monolithic Piezoelectric Disk Resonators Using a Single-Electron Transistor. J Low Temp Phys 191, 316–329 (2018). https://doi.org/10.1007/s10909-018-1862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1862-y

Keywords

Navigation