Abstract
We study numerically the onset of higher-level excitations and resonance frequency shifts in the generalized multilevel Rabi model with dispersive coupling under strong driving. The response to a weak probe is calculated using the Floquet method, which allows us to calculate the probe spectrum and extract the resonance frequency. We test our predictions using a superconducting circuit consisting of a transmon coupled capacitively to a coplanar waveguide resonator. This system is monitored by a weak probe field and at the same time driven at various powers by a stronger microwave tone. We show that the transition from the quantum to the classical regime is accompanied by a rapid increase of the transmon occupation and consequently that the qubit approximation is valid only in the extreme quantum limit.
Similar content being viewed by others
References
E.T. Jaynes, F.W. Cummings, Proc. IEEE 51(1), 89 (1963). https://doi.org/10.1109/PROC.1963.1664
M. Devoret, S. Girvin, R. Schoelkopf, Annalen der Physik 16(10–11), 767 (2007). https://doi.org/10.1002/andp.200710261
Y. Zhu, D.J. Gauthier, S.E. Morin, Q. Wu, H.J. Carmichael, T.W. Mossberg, Phys. Rev. Lett. 64(21), 2499 (1990). https://doi.org/10.1103/PhysRevLett.64.2499
H.J. Carmichael, P. Kochan, B.C. Sanders, Phys. Rev. Lett. 77(4), 631 (1996). https://doi.org/10.1103/PhysRevLett.77.631
J.M. Fink, M. Göppl, M. Baur, R. Bianchetti, P.J. Leek, A. Blais, A. Wallraff, Nature 454(7202), 315 (2008). https://doi.org/10.1038/nature07112
A. Blais, R.S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 69(6), 062320 (2004). https://doi.org/10.1103/PhysRevA.69.062320
A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431(7005), 162 (2004). https://doi.org/10.1038/nature02851
A. Fragner, M. Göppl, J.M. Fink, M. Baur, R. Bianchetti, P.J. Leek, A. Blais, A. Wallraff, Science 322(5906), 1357 (2008). https://doi.org/10.1126/science.1164482
M.P. Silveri, K.S. Kumar, J. Tuorila, J. Li, A. Vepsäläinen, E.V. Thuneberg, G.S. Paraoanu, N. J. Phys. 17(4), 043058 (2015). https://doi.org/10.1088/1367-2630/17/4/043058
J. Li, M.P. Silveri, K.S. Kumar, J.M. Pirkkalainen, A. Vepsäläinen, W.C. Chien, J. Tuorila, M.A. Sillanpää, P.J. Hakonen, E.V. Thuneberg, G.S. Paraoanu, Nat. Commun. 4, 1420 (2013). https://doi.org/10.1038/ncomms2383
A. Mezzacapo, U. Las Heras, J.S. Pedernales, L. DiCarlo, E. Solano, L. Lamata, Sci. Rep. 4, 7482 (2014). https://doi.org/10.1038/srep07482
L. Lamata, Sci. Rep. 7, 43768 (2017). https://doi.org/10.1038/srep43768
N.K. Langford, R. Sagastizabal, M. Kounalakis, C. Dickel, A. Bruno, F. Luthi, D.J Theon, A. Endo, L. DiCarlo, Nat. Commun. 8, 1715 (2017). https://doi.org/10.1038/s41467-017-01061-x
R.J. Schoelkopf, S.M. Girvin, Nature 451(7179), 664 (2008). https://doi.org/10.1038/451664a
G.S. Paraoanu, J. Low Temp. Phys. 175(5), 633 (2014). https://doi.org/10.1007/s10909-014-1175-8
J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 76(4), 042319 (2007). https://doi.org/10.1103/PhysRevA.76.042319
D.I. Schuster, A.A. Houck, J.A. Schreier, A. Wallraff, J.M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Nature 445(7127), 515 (2007). https://doi.org/10.1038/nature05461
C. Ciuti, I. Carusotto, Phys. Rev. A 74(3), 033811 (2006). https://doi.org/10.1103/PhysRevA.74.033811
J. Lolli, A. Baksic, D. Nagy, V.E. Manucharyan, C. Ciuti, Phys. Rev. Lett. 114(18), 183601 (2015). https://doi.org/10.1103/PhysRevLett.114.183601
M. Cirio, K. Debnath, N. Lambert, F. Nori, Phys. Rev. Lett. 119(5), 053601 (2017). https://doi.org/10.1103/PhysRevLett.119.053601
F. Bloch, A. Siegert, Phys. Rev. 57(6), 522 (1940). https://doi.org/10.1103/PhysRev.57.522
P. Forn-Díaz, J. Lisenfeld, D. Marcos, J.J. García-Ripoll, E. Solano, C.J.P.M. Harmans, J.E. Mooij, Phys. Rev. Lett. 105(23), 237001 (2010). https://doi.org/10.1103/PhysRevLett.105.237001
P. Alsing, D.S. Guo, H.J. Carmichael, Phys. Rev. A 45(7), 5135 (1992). https://doi.org/10.1103/PhysRevA.45.5135
L.S. Bishop, J.M. Chow, J. Koch, A.A. Houck, M.H. Devoret, E. Thuneberg, S.M. Girvin, R.J. Schoelkopf, Nat. Phys. 5(2), 105 (2009). https://doi.org/10.1038/nphys1154
H. Carmichael, Phys. Rev. X 5(3), 031028 (2015). https://doi.org/10.1103/PhysRevX.5.031028
J. Fink, A. Dombi, A. Vukics, A. Wallraff, P. Domokos, Phys. Rev. X 7(1), 011012 (2017). https://doi.org/10.1103/PhysRevX.7.011012
I. Pietikäinen, S. Danilin, K.S. Kumar, A. Vepsäläinen, D.S. Golubev, J. Tuorila, G.S. Paraoanu, Phys. Rev. B 96(2), 020501 (2017). https://doi.org/10.1103/PhysRevB.96.020501
J.M. Fink, L. Steffen, P. Studer, L.S. Bishop, M. Baur, R. Bianchetti, D. Bozyigit, C. Lang, S. Filipp, P.J. Leek, A. Wallraff, Phys. Rev. Lett. 105(16), 163601 (2010). https://doi.org/10.1103/PhysRevLett.105.163601
M.P. Silveri, J.A. Tuorila, E.V. Thuneberg, G.S. Paraoanu, Rep. Progress Phys. 80(5), 056002 (2017). https://doi.org/10.1088/1361-6633/aa5170
J. Tuorila, M. Silveri, M. Sillanpää, E. Thuneberg, Y. Makhlin, P. Hakonen, Phys. Rev. Lett. 105(25), 257003 (2010). https://doi.org/10.1103/PhysRevLett.105.257003
J. Tuorila, M. Silveri, M. Sillanpää, E. Thuneberg, Y. Makhlin, P. Hakonen, Supercond. Sci. Technol. 26(12), 124001 (2013). https://doi.org/10.1088/0953-2048/26/12/124001
M.D. Reed, L. DiCarlo, B.R. Johnson, L. Sun, D.I. Schuster, L. Frunzio, R.J. Schoelkopf, Phys. Rev. Lett. 105(17), 173601 (2010). https://doi.org/10.1103/PhysRevLett.105.173601
L.S. Bishop, E. Ginossar, S.M. Girvin, Phys. Rev. Lett. 105(10), 100505 (2010). https://doi.org/10.1103/PhysRevLett.105.100505
M. Boissonneault, J.M. Gambetta, A. Blais, Phys. Rev. Lett. 105(10), 100504 (2010). https://doi.org/10.1103/PhysRevLett.105.100504
M. Boissonneault, A.C. Doherty, F.R. Ong, P. Bertet, D. Vion, D. Esteve, A. Blais, Phys. Rev. A 85(2), 022305 (2012). https://doi.org/10.1103/PhysRevA.85.022305
M. Boissonneault, J.M. Gambetta, A. Blais, Phys. Rev. A 86(2), 022326 (2012). https://doi.org/10.1103/PhysRevA.86.022326
M. Grifoni, P. Hänggi, Phys. Rep. 304(5), 229 (1998). https://doi.org/10.1016/S0370-1573(98)00022-2
M. Silveri, J. Tuorila, M. Kemppainen, E. Thuneberg, Phys. Rev. B 87(13), 134505 (2013). https://doi.org/10.1103/PhysRevB.87.134505
L.D. Landau, E.M. Lifshitz, Statistical Physics, Part I (Pergamon, Oxford, 1980)
R.H. Dicke, Phys. Rev. 93, 99 (1954). https://doi.org/10.1103/PhysRev.93.99
M. Tavis, F.W. Cummings, Phys. Rev. 170, 379 (1968). https://doi.org/10.1103/PhysRev.170.379
Acknowledgements
Discussions with D. Golubev and A. Vepsäläinen are gratefully acknowledged. This work was supported by the Academy of Finland (Projects No. 263457 and No. 135135), the Finnish Cultural Foundation, Centre of Quantum Engineering at Aalto University (Projects QMET and QMETRO), and the Centres of Excellence LTQ (Project No. 250280), and COMP (Projects No. 251748 and No. 284621). This work used the cryogenic facilities of the Low Temperature Laboratory at OtaNano/Aalto University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pietikäinen, I., Danilin, S., Kumar, K.S. et al. Multilevel Effects in a Driven Generalized Rabi Model. J Low Temp Phys 191, 354–364 (2018). https://doi.org/10.1007/s10909-018-1857-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10909-018-1857-8