Skip to main content

Quantum Noise of Electron–Phonon Heat Current

Abstract

We analyze heat current fluctuations between electrons and phonons in a metal. In equilibrium we recover the standard result consistent with the fluctuation–dissipation theorem. Here we show that heat current noise at finite frequencies remains non-vanishing down to zero temperature. From the experimental point of view, it is a small effect and up to now elusive. We briefly discuss the impact of electron–phonon heat current fluctuations on calorimetry, particularly in the regime of single microwave-photon detection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. H. Pothier, S. Gueron, N.O. Birge, D. Esteve, M.H. Devoret, Energy distribution function of quasiparticles in mesoscopic wires. Phys. Rev. Lett. 79, 3490 (1997)

    ADS  Article  Google Scholar 

  2. V.F. Gantmakher, The experimental study of electron–phonon scattering in metals. Rep. Prog. Phys. 37, 317 (1974)

    ADS  Article  Google Scholar 

  3. M.L. Roukes, M.R. Freeman, R.S. Germain, R.C. Richardson, M.B. Ketchen, Hot electrons and energy transport in metals at millikelvin temperatures. Phys. Rev. Lett. 55, 422 (1985)

    ADS  Article  Google Scholar 

  4. F.C. Wellstood, C. Urbina, J. Clarke, Hot-electron effects in metals. Phys. Rev. B 49, 5942 (1994)

    ADS  Article  Google Scholar 

  5. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particles Systems (McGraw-Hill, San Francisco, 1971), pp. 396–399

    Google Scholar 

  6. M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011)

    ADS  Article  Google Scholar 

  7. J.P. Pekola, P. Solinas, A. Shnirman, D.V. Averin, Calorimetric measurement of work in a quantum system. New J. Phys. 15, 115006 (2013)

    ADS  Article  Google Scholar 

  8. D. Golubev, L. Kuzmin, Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction. J. Appl. Phys. 89, 6464 (2001)

    ADS  Article  Google Scholar 

  9. S.R. Golwala, J. Jochum, B. Sadoulet, Noise considerations in low resistance NIS junctions, in Proceedings of the VIIth International Workshop on Low Temperature Detectors, 27 July–2 August, 1997, Munich, Germany, ed. by S. Cooper (1997), pp. 64–65

  10. D.V. Averin, J.P. Pekola, Violation of the fluctuation-dissipation theorem in time-dependent mesoscopic heat transport. Phys. Rev. Lett. 104, 220601 (2010)

    ADS  Article  Google Scholar 

  11. N.W. Ashcroft, N. David Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)

    MATH  Google Scholar 

  12. A.N. Cleland, Foundations of Nanomechanics: From Solid-State Theory to Device Applications (Springer, New York, 2003)

    Book  Google Scholar 

  13. D. Sergi, Energy transport and fluctuations in small conductors. Phys. Rev. B 83, 033401 (2011)

    ADS  Article  Google Scholar 

  14. F. Zhan, S. Denisov, P. Hänggi, Electronic heat transport across a molecular wire: power spectrum of heat fluctuations. Phys. Rev. B 84, 195117 (2011)

    ADS  Article  Google Scholar 

  15. R.J. Schoelkopf, P. Wahlgren, A.A. Kozhevnikov, P. Delsing, D.E. Prober, The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280, 1238 (1998)

    ADS  Article  Google Scholar 

  16. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)

    ADS  Article  Google Scholar 

  17. D.R. Schmidt, C.S. Yung, A.N. Cleland, Nanoscale radiofrequency thermometry. Appl. Phys. Lett. 83, 1002 (2003)

    ADS  Article  Google Scholar 

  18. S. Gasparinetti, K.L. Viisanen, O.-P. Saira, T. Faivre, M. Arzeo, M. Meschke, J.P. Pekola, Fast electron thermometry towards ultra-sensitive calorimetric detection. Phys. Rev. Appl. 3, 014007 (2015)

    ADS  Article  Google Scholar 

  19. O.-P. Saira, M. Zgirski, K.L. Viisanen, D.S. Golubev, J.P. Pekola, Dispersive thermometry with a Josephson junction coupled to a resonator. Phys. Rev. Appl. 6, 024005 (2016)

    ADS  Article  Google Scholar 

  20. Z. Iftikhar, A. Anthore, S. Jezouin, F.D. Parmentier, Y. Jin, A. Cavanna, A. Ouerghi, U. Gennser, F. Pierre, Primary thermometry triad at 6 mK in mesoscopic circuits. Nat. Commun. 7, 12908 (2016)

    ADS  Article  Google Scholar 

  21. A.V. Feshchenko, L. Casparis, I.M. Khaymovich, D. Maradan, O.-P. Saira, M. Palma, M. Meschke, J.P. Pekola, D.M. Zumbühl, Tunnel-junction thermometry down to millikelvin temperatures. Phys. Rev. Appl. 4, 034001 (2015)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank D. V. Averin for useful discussions. We acknowledge financial support from the Academy of Finland under Grants 312057 and 303677. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the European Research Council (ERC) programme and Marie Sklodowska-Curie actions (Grant agreements 742559 and 766025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bayan Karimi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pekola, J.P., Karimi, B. Quantum Noise of Electron–Phonon Heat Current. J Low Temp Phys 191, 373–379 (2018). https://doi.org/10.1007/s10909-018-1854-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1854-y

Keywords

  • Electron–phonon coupling
  • Heat current
  • Quantum fluctuations