Abstract
We analyze heat current fluctuations between electrons and phonons in a metal. In equilibrium we recover the standard result consistent with the fluctuation–dissipation theorem. Here we show that heat current noise at finite frequencies remains non-vanishing down to zero temperature. From the experimental point of view, it is a small effect and up to now elusive. We briefly discuss the impact of electron–phonon heat current fluctuations on calorimetry, particularly in the regime of single microwave-photon detection.
This is a preview of subscription content, access via your institution.


Similar content being viewed by others
References
H. Pothier, S. Gueron, N.O. Birge, D. Esteve, M.H. Devoret, Energy distribution function of quasiparticles in mesoscopic wires. Phys. Rev. Lett. 79, 3490 (1997)
V.F. Gantmakher, The experimental study of electron–phonon scattering in metals. Rep. Prog. Phys. 37, 317 (1974)
M.L. Roukes, M.R. Freeman, R.S. Germain, R.C. Richardson, M.B. Ketchen, Hot electrons and energy transport in metals at millikelvin temperatures. Phys. Rev. Lett. 55, 422 (1985)
F.C. Wellstood, C. Urbina, J. Clarke, Hot-electron effects in metals. Phys. Rev. B 49, 5942 (1994)
A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particles Systems (McGraw-Hill, San Francisco, 1971), pp. 396–399
M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011)
J.P. Pekola, P. Solinas, A. Shnirman, D.V. Averin, Calorimetric measurement of work in a quantum system. New J. Phys. 15, 115006 (2013)
D. Golubev, L. Kuzmin, Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction. J. Appl. Phys. 89, 6464 (2001)
S.R. Golwala, J. Jochum, B. Sadoulet, Noise considerations in low resistance NIS junctions, in Proceedings of the VIIth International Workshop on Low Temperature Detectors, 27 July–2 August, 1997, Munich, Germany, ed. by S. Cooper (1997), pp. 64–65
D.V. Averin, J.P. Pekola, Violation of the fluctuation-dissipation theorem in time-dependent mesoscopic heat transport. Phys. Rev. Lett. 104, 220601 (2010)
N.W. Ashcroft, N. David Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)
A.N. Cleland, Foundations of Nanomechanics: From Solid-State Theory to Device Applications (Springer, New York, 2003)
D. Sergi, Energy transport and fluctuations in small conductors. Phys. Rev. B 83, 033401 (2011)
F. Zhan, S. Denisov, P. Hänggi, Electronic heat transport across a molecular wire: power spectrum of heat fluctuations. Phys. Rev. B 84, 195117 (2011)
R.J. Schoelkopf, P. Wahlgren, A.A. Kozhevnikov, P. Delsing, D.E. Prober, The radio-frequency single-electron transistor (RF-SET): a fast and ultrasensitive electrometer. Science 280, 1238 (1998)
A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)
D.R. Schmidt, C.S. Yung, A.N. Cleland, Nanoscale radiofrequency thermometry. Appl. Phys. Lett. 83, 1002 (2003)
S. Gasparinetti, K.L. Viisanen, O.-P. Saira, T. Faivre, M. Arzeo, M. Meschke, J.P. Pekola, Fast electron thermometry towards ultra-sensitive calorimetric detection. Phys. Rev. Appl. 3, 014007 (2015)
O.-P. Saira, M. Zgirski, K.L. Viisanen, D.S. Golubev, J.P. Pekola, Dispersive thermometry with a Josephson junction coupled to a resonator. Phys. Rev. Appl. 6, 024005 (2016)
Z. Iftikhar, A. Anthore, S. Jezouin, F.D. Parmentier, Y. Jin, A. Cavanna, A. Ouerghi, U. Gennser, F. Pierre, Primary thermometry triad at 6 mK in mesoscopic circuits. Nat. Commun. 7, 12908 (2016)
A.V. Feshchenko, L. Casparis, I.M. Khaymovich, D. Maradan, O.-P. Saira, M. Palma, M. Meschke, J.P. Pekola, D.M. Zumbühl, Tunnel-junction thermometry down to millikelvin temperatures. Phys. Rev. Appl. 4, 034001 (2015)
Acknowledgements
We thank D. V. Averin for useful discussions. We acknowledge financial support from the Academy of Finland under Grants 312057 and 303677. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the European Research Council (ERC) programme and Marie Sklodowska-Curie actions (Grant agreements 742559 and 766025).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pekola, J.P., Karimi, B. Quantum Noise of Electron–Phonon Heat Current. J Low Temp Phys 191, 373–379 (2018). https://doi.org/10.1007/s10909-018-1854-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10909-018-1854-y