Skip to main content
Log in

Single-Photon Quantum Router With a Three-Level Atom Embedded Within a T-Bulge Structure of Coupled Resonant Waveguide

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Photon quantum routing is one of the key elements of the quantum information network and integrated optical devices. In this paper, we theoretically investigate the single-photon transport in an intersection coupled resonant waveguide (CRW), called the T-bulge structure, in which the \(N\hbox {th}\) cavity of a semi-infinite CRW couples with one point of an infinite CRW via a cascaded three-level atom. By using the discrete coordinates approach, transmission and reflection amplitudes of the propagating single photon in the waveguide are analytically obtained. Two cases that a single photon is incident from the infinite CRW and from semi-infinite CRW are considered, respectively. Based on the theoretical framework, we show that the quantum router function can be realized by directing a single photon incidenting from the semi-infinite CRW to the infinite CRW with the unity probabilities, and the probability of routing single photons from infinite CRW to semi-infinite CRW could reach 0.5. Our study provides a full quantum control scheme of single-photon scattering in T-bulge structure coupled cavity array waveguide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.T. Shen, S. Fan, Phys. Rev. Lett. 95, 213001 (2005)

    Article  ADS  Google Scholar 

  2. J.T. Shen, S. Fan, Opt. Lett. 30, 2001 (2005)

    Article  ADS  Google Scholar 

  3. J.T. Shen, S. Fan, Opt. Lett. 98, 153003 (2007)

    Google Scholar 

  4. J.T. Shen, S. Fan, Phys. Rev. A 79, 023837 (2009)

    Article  ADS  Google Scholar 

  5. L. Zhou, Z.R. Gong, Y.-X. Liu, C.P. Sun, F. Nori, Phys. Rev. Lett. 101, 100501 (2008)

    Article  ADS  Google Scholar 

  6. Z.H. Wang, L. Zhou, Y. Li, C.P. Sun, Phys. Rev. A 89, 053813 (2014)

    Article  ADS  Google Scholar 

  7. L. Liu, J. Lu, Quantum Inf. Process. 16, 29 (2017)

    Article  ADS  Google Scholar 

  8. L. Zhou, S. Yang, Y.-X. Liu, C.P. Sun, F. Nori, Phys. Rev. A 80, 062109 (2009)

    Article  ADS  Google Scholar 

  9. H.X. Zheng, D.J. Gauthier, H.U. Baranger, Phys. Rev. A 82, 063816 (2010)

    Article  ADS  Google Scholar 

  10. H.X. Zheng, D.J. Gauthier, H.U. Baranger, Phys. Rev. Lett. 107, 223601 (2011)

    Article  ADS  Google Scholar 

  11. H.X. Zheng, D.J. Gauthier, H.U. Baranger, Phys. Rev. A 85, 043832 (2012)

    Article  ADS  Google Scholar 

  12. H.X. Zheng, D.J. Gauthier, H.U. Baranger, Phys. Rev. Lett. 111, 090502 (2013)

    Article  ADS  Google Scholar 

  13. L. Zhou, H. Dong, Y.-X. Liu, C.P. Sun, F. Nori, Phys. Rev. A 78, 063827 (2008)

    Article  ADS  Google Scholar 

  14. L. Zhou, Y. Chang, H. Dong, L.-M. Kuang, C.P. Sun, Phys. Rev. A 85, 013806 (2012)

    Article  ADS  Google Scholar 

  15. L. Zhou, L.-M. Kuang, Phys. Rev. A 82, 042113 (2010)

    Article  ADS  Google Scholar 

  16. L. Zhou, Y.B. Gao, Z. Song, C.P. Sun, Phys. Rev. A 77, 013831 (2008)

    Article  ADS  Google Scholar 

  17. L. Zhou, J. Lu, C.P. Sun, Phys. Rev. A 76, 012313 (2007)

    Article  ADS  Google Scholar 

  18. Z.R. Gong, H. Ian, L. Zhou, C.P. Sun, Phys. Rev. A 78, 053806 (2008)

    Article  ADS  Google Scholar 

  19. T.S. Tsoi, C.K. Law, Phys. Rev. A 78, 063832 (2008)

    Article  ADS  Google Scholar 

  20. L. Neumeier, M. Leib, M.J. Hartmann, Phys. Rev. Lett. 111, 063601 (2013)

    Article  ADS  Google Scholar 

  21. F. Lecocq, J.B. Clark, R.W. Simmonds, J. Aumentado, J.D. Teufel, Phys. Rev. Lett. 116, 043601 (2016)

    Article  ADS  Google Scholar 

  22. C.-H. Yan, L.-F. Wei, W.-Z. Jia, J.-T. Shen, Phys. Rev. A 84, 045801 (2011)

    Article  ADS  Google Scholar 

  23. C.H. Yan, W.Z. Jia, L.F. Wei, Phys. Rev. A 89, 033819 (2014)

    Article  ADS  Google Scholar 

  24. G.A. Yan, Q.Y. Cai, A.X. Chen, Eur. Phys. J. D 70, 93 (2016)

    Article  ADS  Google Scholar 

  25. M.-T. Cheng, X.-S. Ma, M.-T. Ding, Y.-Q. Luo, G.-X. Zhao, Phys. Rev. A 85, 053840 (2012)

    Article  ADS  Google Scholar 

  26. M.-T. Cheng, J.P. Xu, G.S. Agarwal, Phys. Rev. A 95, 053807 (2017)

    Article  ADS  Google Scholar 

  27. P. Longo, P. Schmitteckert, K. Busch, Phys. Rev. Lett. 104, 023602 (2010)

    Article  ADS  Google Scholar 

  28. P. Longo, P. Schmitteckert, K. Busch, Phys. Rev. A 83, 063828 (2011)

    Article  ADS  Google Scholar 

  29. P. Longo, J.H. Cole, K. Busch, Opt. Express 20, 12326 (2012)

    Article  ADS  Google Scholar 

  30. M. Alexanian, Phys. Rev. A 81, 015805 (2010)

    Article  ADS  Google Scholar 

  31. T. Shi, C.P. Sun, Phys. Rev. B 79, 205111 (2009)

    Article  ADS  Google Scholar 

  32. T. Shi, S. Fan, C.P. Sun, Phys. Rev. A 84, 063803 (2011)

    Article  ADS  Google Scholar 

  33. T. Shi, S. Fan, Phys. Rev. A 87, 063818 (2013)

    Article  ADS  Google Scholar 

  34. Q. Li, L. Zhou, C.P. Sun, Phys. Rev. A 89, 063810 (2014)

    Article  ADS  Google Scholar 

  35. J.F. Huang, T. Shi, C.P. Sun, F. Nori, Phys. Rev. A 88, 013836 (2013)

    Article  ADS  Google Scholar 

  36. C. Martens et al., New J. Phys. 15, 083019 (2013)

    Article  ADS  Google Scholar 

  37. F. Lombardo et al., Phys. Rev. A 89, 053826 (2014)

    Article  ADS  Google Scholar 

  38. W. Qin et al., Phys. Rev. A 93, 032337 (2016)

    Article  ADS  Google Scholar 

  39. K. Xia, Phys. Rev. A 89, 023815 (2015)

    Article  ADS  Google Scholar 

  40. X.Y. Chen, F.Y. Zhang, C. Li, J. Opt. Soc. Am. B. 33, 000583 (2016)

    Article  ADS  Google Scholar 

  41. L. Zhou, L.-P. Yang, Y. Li, C.P. Sun, Phys. Rev. Lett. 111, 103604 (2013)

    Article  ADS  Google Scholar 

  42. J. Lu, L. Zhou, L.-M. Kuang, F. Nori, Phys. Rev. A 89, 013805 (2014)

    Article  ADS  Google Scholar 

  43. J. Lu, Z.H. Wang, L. Zhou, Opt. Express. 23, 22955 (2015)

    Article  ADS  Google Scholar 

  44. M.-T. Cheng, Y.-Y. Song, X.-S. Ma, J. Mod. Opt. 63, 881 (2016)

    Article  ADS  Google Scholar 

  45. T. Tian, L.J. Song, Opt. Commun. 402, 557 (2017)

    Article  ADS  Google Scholar 

  46. G.A. Yan, H.X. Qiao, H. Lu, A.X. Chen, Sci. China Phys. Mech. Astron. 60, 090311 (2017)

    Article  ADS  Google Scholar 

  47. S.Q. Tang, J.B. Yuan, X.W. Wang, L.M. Kuang, Chin. Phys. Lett. 32, 040303 (2015)

    Article  ADS  Google Scholar 

  48. M. Notomi, E. Kuramochi, T. Tanabe, Nat. Photon. 2, 741 (2008)

    Article  ADS  Google Scholar 

  49. E. Bulgakov, A. Sadreev, Phys. Rev. B 84, 155304 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Professor L. Zhou for her useful discussion. This work is supported by the National Natural Science Foundation of China under Grant Nos. 11647129, 11422540, 11575058, the Scientific Research Fund of Hunan Provincial Education Department of China under Grant Nos. 16B036, 15A028, the Hunan Provincial Natural Science Foundation of China under Grant Nos. 2017JJ3005, 2016JJ2009, the Science and Technology Plan Project of Hunan Province under Grant No. 2016TP1020, the Open fund project of Hunan Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang normal university under Grant No. IIPA18K08, the Open fund project of the Hunan Provincial Applied Basic Research Base of Optoelectronic Information Technology under Grant No. GD18K04, and the open fund project of the Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education under Grant No. QSQC1704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Q. Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Yuan, J.B. & Tang, S.Q. Single-Photon Quantum Router With a Three-Level Atom Embedded Within a T-Bulge Structure of Coupled Resonant Waveguide. J Low Temp Phys 195, 60–71 (2019). https://doi.org/10.1007/s10909-018-02126-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-02126-x

Keywords

Navigation