Journal of Low Temperature Physics

, Volume 196, Issue 1–2, pp 253–260 | Cite as

Local Electronic Structures Around a Nonmagnetic Impurity in \(\hbox {BiS}_2\)-Based Superconductors

  • Yun Liu
  • Bin LiuEmail author


In a superconductor, the crucial requirement is to confirm the pairing symmetry of the superconducting (SC) state, which could help to reveal the underlying SC mechanism. In this paper, we use the local electronic structure around a single nonmagnetic impurity to probe the pairing symmetry in recently discovered \(\hbox {BiS}_{2}\)-based superconductors, where no general consensus on the pairing symmetry has been reached so far. We find that the effect from a single nonmagnetic impurity scattering on the SC-state with the conventional s-wave, the extended s-wave, and the \(d_{x^2 -y^2}\)-wave symmetries may induce qualitatively different resonance states. Since impurity-induced resonance states can be verified directly by scanning tunneling microscopy experiments, they are proposed as a test of the SC pairing symmetry in \(\hbox {BiS}_{2}\)-based superconductors.


\(\hbox {BiS}_{2}\)-based superconductor Pairing symmetry Nonmagnetic impurity effect 



This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 11774025.


  1. 1.
    Y. Mizuguchi, H. Fujihisa, Y. Gotoh, K. Suzuki, H. Usui, K. Kuroki, S. Demura, Y. Takano, H. Izawa, O. Miura, Phys. Rev. B. 86, R220510 (2012)CrossRefGoogle Scholar
  2. 2.
    Y. Mizuguchi, S. Demura, K. Deguchi, Y. Takano, H. Fujihisa, Y. Gotoh, H. Izawa, O. Miura, J. Phys. Soc. Jpn. 81, 114725 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Demura, Y. Mizuguchi, K. Deguchi, H. Okazaki, H. Hara, T. Watanabe, S.J. Denholme, M. Fujioka, T. Ozaki, H. Fujihisa, Y. Gotoh, O. Miura, T. Yamaguchi, H. Takeya, Y. Takano, J. Phys. Soc. Jpn. 82, 033708 (2013)CrossRefGoogle Scholar
  4. 4.
    J. Xing, S. Li, X. Ding, H. Yang, H.H. Wen, Phys. Rev. B. 86, 214518 (2012)CrossRefGoogle Scholar
  5. 5.
    R. Jha, A. Kumar, S. Singh, V. Awana, J. Supercond. Novel Magn. 26, 499 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Tan, L. Li, Y. Liu, P. Tong, B. Zhao, W. Lu, Y. Sun, Physica C 483, 94–96 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Singh, A. Kumar, B. Gahtori, S. Kirtan, G. Sharma, S. Patnaik, V. Awana, J. Am. Chem. Soc. 134, 16504 (2012)CrossRefGoogle Scholar
  8. 8.
    X. Wan, H.C. Ding, S. Savrasov, C.G. Duan, Phys. Rev. B. 87, 115124 (2013)CrossRefGoogle Scholar
  9. 9.
    S.L. Liu, J. Supercond. Novel Magn. 26, 3411–3418 (2013)CrossRefGoogle Scholar
  10. 10.
    B. Liu, S. Feng, Europhys. Lett. (EPL) 106, 17003 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Zhang, Q. Zhang, Mod. Phys. Lett. B. 26(28), 1230020 (2012)CrossRefGoogle Scholar
  12. 12.
    S. Li, H. Yang, J. Tao, X. Ding, H.H. Wen, Sci. China Phys. Mech. Astron. 56, 2019–2025 (2013)CrossRefGoogle Scholar
  13. 13.
    H. Usui, K. Suzuki, K. Kuroki, Phys. Rev. B. 86, R220501 (2012)CrossRefGoogle Scholar
  14. 14.
    G.R. Stewart, Rev. Mod. Phys. 83, 1589 (2011)CrossRefGoogle Scholar
  15. 15.
    G.B. Martins, A. Moreo, E. Dagotto, Phys. Rev. B. 87, 081102 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Ota, K. Okazaki, H.Q. Yamamoto, T. Yamamoto, S. Watanabe, C. Chen, M. Nagao, S. Watauchi, I. Tanake, Y. Takano, S. Shin, Phys. Rev. Lett. 118, 167002 (2017)CrossRefGoogle Scholar
  17. 17.
    T. Zhou, Z.D. Wang, J. Supercond. Novel. Magn. 26, 2735–2740 (2013)CrossRefGoogle Scholar
  18. 18.
    Y. Gao (2013). arXiv:1304.2102
  19. 19.
    Y. Gao, T. Zhou, H. Huang, P. Tong, Q.H. Wang, Phys. Rev. B. 90, 054518 (2014)CrossRefGoogle Scholar
  20. 20.
    A.V. Balatsky, I. Vekhter, J.-X. Zhu, Rev. Mod. Phys. 78, 373 (2006)CrossRefGoogle Scholar
  21. 21.
    M.M. Korshunov, YuN Togushova, O.V. Dolgov, Phys. Uspekhi 59, 1211–1240 (2016)CrossRefGoogle Scholar
  22. 22.
    V.A. Shestakov, M.M. Korshunov, O.V. Dolgov, Symmetry 10, 323 (2018)CrossRefGoogle Scholar
  23. 23.
    Bin Liu, Ying Liang, Phys. Rev. B 77, 245121 (2008)CrossRefGoogle Scholar
  24. 24.
    Bin Liu, Phys. Rev. B 79, 172501 (2009)CrossRefGoogle Scholar
  25. 25.
    S. Onari, H. Kontani, Phys. Rev. Lett. 103, 177001 (2009)CrossRefGoogle Scholar
  26. 26.
    Y. Senga, H. Kontani, New J. Phys. 11, 035005 (2009)CrossRefGoogle Scholar
  27. 27.
    J.-X. Zhu, R. Yu, A.V. Balatsky, Q. Si, Phys. Rev. Lett. 107, 167002 (2011)CrossRefGoogle Scholar
  28. 28.
    Bin Liu, X. Yan, F. Yuan, Solid State Commun. 177, 123 (2014)CrossRefGoogle Scholar
  29. 29.
    B. Liu, X. Yan, F. Yuan, J. Phys. Soc. Jpn 82, 114713 (2013)CrossRefGoogle Scholar
  30. 30.
    A. Ichikawa, T. Hotta, J. Phys. Soc. Jpn. 87, 114706 (2018)CrossRefGoogle Scholar
  31. 31.
    B. Liu, I. Eremin, Phys. Rev. B. 78, 014518 (2008)CrossRefGoogle Scholar
  32. 32.
    B. Liu, X. Hu, Phys. Rev. B. 81, 144504 (2010)CrossRefGoogle Scholar
  33. 33.
    B. Liu, X. Hu, J. Phys. Chem. Solids 72, 380 (2011)CrossRefGoogle Scholar
  34. 34.
    B. Liu, Phys. Rev. B 88, 245127 (2013)CrossRefGoogle Scholar
  35. 35.
    G. Zhang, B. Liu, Y. Yang, S. Feng, Front. Phys. 11, 117402 (2016)CrossRefGoogle Scholar
  36. 36.
    D. Wang, B. Liu, M. Liu, Y. Yang, S. Feng, Front. Phys. 14, 013501 (2019)CrossRefGoogle Scholar
  37. 37.
    P.W. Anderson, J. Phys. Chem. Solids 11, 26 (1959)CrossRefGoogle Scholar
  38. 38.
    E.W. Hudson et al., Nature 411, 920 (2001)CrossRefGoogle Scholar
  39. 39.
    S. Haas, K. Maki, Phys. Rev. Lett. 85, 2172 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsBeijing Jiaotong UniversityBeijingChina

Personalised recommendations