Co-current Doping Effect of Nanoscale Carbon and Aluminum Nitride on Critical Current Density and Flux Pinning Properties of Bulk \(\hbox {MgB}_{2}\) Superconductors
- 97 Downloads
Abstract
The effect of nanoscale aluminum nitride (n-AlN) and carbon (n-C) co-doping on superconducting properties of polycrystalline bulk \(\hbox {MgB}_{2}\) superconductor has been investigated. Polycrystalline pellets of \(\hbox {MgB}_{2}\), \(\hbox {MgB}_{2} + 0.5\) wt% AlN (nano), \(\hbox {MgB}_{1.99}\hbox {C}_{0.01}\) and \(\hbox {MgB}_{1.99}\hbox {C}_{0.01} + 0.5\) wt% AlN (nano) have been synthesized by a solid reaction process under inert atmosphere. The transition temperature (\(T_{\mathrm{C}})\) estimated from resistivity measurement indicates only a small decrease for C (nano) and co-doped \(\hbox {MgB}_{2}\) samples. The magnetic field response of investigated samples has been measured at 4, 10, and 20 K in the field range ± 6 T. \(\hbox {MgB}_{2}\) pellets co-doped with 0.5 wt% n-AlN and 1 wt% n-C display appreciable enhancement in critical current density (\(J_\mathrm{C}\)) of \(\hbox {MgB}_{2}\) in both low (\(\ge 3\) times), as well as, high-field region (\(\ge \) 15 times). \(J_\mathrm{C}\) versus H behavior of both pristine and doped \(\hbox {MgB}_{2}\) pellets is well explained in the light of the collective pinning model. Further, the normalized pinning force density \(f_\mathrm{p}(= F_\mathrm{p}/F_{\mathrm{pmax}})\) displays a fair correspondence with the scaling procedure proposed by Eisterer et al. Moreover, the scaled data of the pinning force density (i.e., \(f_\mathrm{p}{-}h\) data) of the investigated pellets at different temperature are well interpreted by a modified Dew-Hughes expression reported by Sandu and Chee.
Keywords
\(\hbox {MgB}_{2}\) superconductors Co-doping Critical current density Flux pinning Scaling of pinning force densityReferences
- 1.J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63–64 (2001)ADSCrossRefGoogle Scholar
- 2.N. Chikumoto, A. Yamamoto, M. Konczykowski, M. Murakami, Physica C 388–389, 167–168 (2003)CrossRefGoogle Scholar
- 3.A. Vajpayee, V.P.S. Awana, G.L. Bhalla, H. Kishan, Nanotechnology 19, 125708-1-7 (2008)ADSCrossRefGoogle Scholar
- 4.G. Serrano, A. Serquis, D. Rodrigues Jr., M.T. Malachevsky, J.M. Espasandin, C. Ayala, J. Phys. Conf. Ser. 97, 0121271–0121277 (2008)Google Scholar
- 5.O.V. Shcherbakova, A.V. Pan, J.L. Wang, A.V. Shcherbakov, S.X. Dou, D. Wexler, E. Babic’, M. Jercinovi c’, O. Husnjak, Supercond. Sci. Technol. 21, 015005-1-7 (2008)ADSCrossRefGoogle Scholar
- 6.H. Jiang, Z. Dong, Y. Liu, Z. Ma, L. Yu, Q. Cai, Physica C 480, 67–70 (2012)ADSCrossRefGoogle Scholar
- 7.M. Mudgel, V.P.S. Awana, R. Lal, H. Kishan, L.S. Sharth Chandra, V. Ganesan, A.V. Narlikar, G.L. Bhalla, J. Phys. Condens. Matter 20, 095205 (2008)ADSCrossRefGoogle Scholar
- 8.Y. Yang, L. Wang, H.H. Sun, C.H. Cheng, Y. Zhao, J. Phys. Chem. Solids 72, 593–596 (2011)ADSCrossRefGoogle Scholar
- 9.M. Mudgel, L.S. Sharth Chandra, V. Ganesan, G.L. Bhalla, R. Lal, H. Kishan, V.P.S. Awana, J. Appl. Phys. 106, 033904-1-6 (2009)ADSCrossRefGoogle Scholar
- 10.A. Gurevich, S. Patnaik, V. Braccini, K.H. Kim, C. Mielke, X. Song, L.D. Cooley, S.D. Bu, D.M. Kim, J.H. Choi, L.J. Belenky, J. Giencke, M.K. Lee, W. Tian, X.Q. Pan, A. Siri, E.E. Hellstrom, C.B. Eom, D.C. Larbalestier, Supercond. Sci. Technol. 17, 278–286 (2004)ADSCrossRefGoogle Scholar
- 11.T.M. Shen, G. Li, C.H. Cheng, Y. Zhao, Supercond. Sci. Technol. 19, 1219–1224 (2006)ADSCrossRefGoogle Scholar
- 12.Y. Zhao, Y. Feng, T.M. Shen, G. Li, Y. Yang, C.H. Cheng, J. Appl. Phys. 100, 123902-1-5 (2006)ADSGoogle Scholar
- 13.K.S.B. De Silva, X. Xu, X.L. Wang, D. Wexler, D. Attard, F. Xiang, S.X. Dou, Scr. Mater. 67, 802–805 (2012)CrossRefGoogle Scholar
- 14.Y. Zhao, C. Ke, C.H. Cheng, Y. Feng, Y. Yang, P. Munroe, Physica C 470, 1096–1099 (2010)ADSCrossRefGoogle Scholar
- 15.K.Y. Tan, K.L. Tan, K.B. Tan, K.P. Lim, S.A. Halim, S.K. Chen, J. Supercond. Nov. Magn. 24, 2025–2029 (2011)CrossRefGoogle Scholar
- 16.G. Aldica, S. Popa, M. Enculescu, P. Badica, Scr. Mater. 68, 428–431 (2013)CrossRefGoogle Scholar
- 17.Z. Ma, Y. Liu, L. Yu, Q. Zhao, J. Appl. Phys. 104, 113917 (2008)ADSCrossRefGoogle Scholar
- 18.Z. Ma, Y. Liu, W. Hu, Z. Goa, L. Yu, Z.Q. Dong, Scr. Mater. 61, 836–839 (2009)CrossRefGoogle Scholar
- 19.N. Novosel, S. Galic, D. Pajic, Z. Skoko, I. Loncarek, M. Mustapic, K. Zadro K, E. Babic, Supercond. Sci. Technol. 26, 105024 (2013)ADSCrossRefGoogle Scholar
- 20.S. Thomas, S. Rahul, K.M. Devadas, N. Varghese, A. Sundaresan, U. Syamaprasad, Mater. Chem. Phys. 148, 190–194 (2014)CrossRefGoogle Scholar
- 21.Z. Ma, Y. Liu, Q. Cai, J. Supercond. Nov. Magn. 25, 1683–1688 (2012)CrossRefGoogle Scholar
- 22.D. Tripathi, T.K. Dey, J. Appl. Phys. 114, 093906-1-11 (2013)ADSGoogle Scholar
- 23.W.K. Yeoh, J.H. Kim, J. Horvat, X. Xu, M.J. Qin, S.X. Dou, C.H. Jiang, T. Nakane, H. Kumakura, P. Munroe, Supercond. Sci. Technol. 19, 596–599 (2006)ADSCrossRefGoogle Scholar
- 24.D. Tripathi, T.K. Dey, J. Supercond. Nov. Magn. 28, 2025–2032 (2015)CrossRefGoogle Scholar
- 25.D. Tripathi, S. Maharana, T.K. Dey, Cryogenics 63, 85–93 (2014)ADSCrossRefGoogle Scholar
- 26.C.P. Bean, Phys. Rev. Lett. 8, 250–253 (1962)ADSCrossRefGoogle Scholar
- 27.K. Vinod, N. Varghese, R.G. Abhilash, U. Symaprasad, S.B. Roy, J. Alloys Compd. 464, 33–37 (2008)CrossRefGoogle Scholar
- 28.Q. Cai, Y. Liu, Z. Ma, L. Yu, Physica C 496, 53–57 (2014)ADSCrossRefGoogle Scholar
- 29.D. Tripathi, T.K. Dey, Physica C 507, 1–9 (2014)ADSCrossRefGoogle Scholar
- 30.D. Sharma, J. Kumar, A. Vajpayee, R. Kumar, P.K. Ahluwalia, V.P.S. Awana, J. Supercond. Nov. Magn. 24, 1925–1931 (2011)CrossRefGoogle Scholar
- 31.V. Singh, P. Chauhan, J. Phys. Chem. Solids 70, 1074–1079 (2009)ADSCrossRefGoogle Scholar
- 32.J. Wang, Y. Bugoslavsky, A. Berenov, L. Cowey, A.D. Caplin, L.F. Cohen, J.L. Macmanus Driscoll, Appl. Phys. Lett. 81, 2026 (2002)ADSCrossRefGoogle Scholar
- 33.S.K. Chen, Z. Lockman, M. Wei, B.A. Glowacki, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 242501 (2005)ADSCrossRefGoogle Scholar
- 34.D. Tripathi, T.K. Dey, Indian J. Phys. 88, 1175–1182 (2014)ADSCrossRefGoogle Scholar
- 35.M.A. Susner, M. Bhatia, M.D. Sumption, E.W. Collings, J. Appl. Phys. 105, 1039161 (2009)CrossRefGoogle Scholar
- 36.J.M. Rowell, Supercond. Sci. Technol. 16, R17–R27 (2003)ADSCrossRefGoogle Scholar
- 37.A. Yamamoto, J. Shimoyama, K. Kishio, Teruo Matsushita, Supercond. Sci. Technol. 20, 658–666 (2007)ADSCrossRefGoogle Scholar
- 38.D. Tripathi, T.K. Dey, J. Supercond. Nov. Magn. 27, 1647–1658 (2014)CrossRefGoogle Scholar
- 39.E.J. Kramer, J. Appl. Phys. 44, 1360–1370 (1973)ADSCrossRefGoogle Scholar
- 40.J. Wang, Z.X. Shi, H. Lv, T. Tamegai, Physica C 445–448, 462–465 (2006)CrossRefGoogle Scholar
- 41.G. Blatter, M.Y. Feigelman, Y.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125–1388 (1994)ADSCrossRefGoogle Scholar
- 42.V. Sandu, Mod. Phys. Lett. B 26, 1230007 (2012)ADSCrossRefGoogle Scholar
- 43.T. Higuchi, S.I. Yoo, M. Murakami, Phys. Rev. B 59, 1514–1527 (1999)ADSCrossRefGoogle Scholar
- 44.M. Eisterer, Phys. Rev. B 77, 144524-1-5 (2008)ADSCrossRefGoogle Scholar
- 45.D. Dew-Hughes, Philos. Mag. 30, 293–305 (1974)ADSCrossRefGoogle Scholar
- 46.E.J. Kramer, J. Appl. Phys. 44, 1360–1370 (1973)ADSCrossRefGoogle Scholar
- 47.S. Keshavarzi, M.J. Qin, S. Soltanian, H.K. Liu, S.X. Dou, Physica C 408–410, 601–602 (2004)CrossRefGoogle Scholar
- 48.M. Gharaibeh, B.A. Albiss, I. Jumah, I.M. Obaidat, J. Appl. Phys. 107, 063908 (2010)ADSCrossRefGoogle Scholar
- 49.V. Sandu, C.Y. Chee, J. Supercond. Nov. Magn. 26, 125–131 (2013)CrossRefGoogle Scholar