Journal of Low Temperature Physics

, Volume 191, Issue 3–4, pp 136–152 | Cite as

Co-current Doping Effect of Nanoscale Carbon and Aluminum Nitride on Critical Current Density and Flux Pinning Properties of Bulk \(\hbox {MgB}_{2}\) Superconductors

  • D. TripathiEmail author
  • T. K. Dey


The effect of nanoscale aluminum nitride (n-AlN) and carbon (n-C) co-doping on superconducting properties of polycrystalline bulk \(\hbox {MgB}_{2}\) superconductor has been investigated. Polycrystalline pellets of \(\hbox {MgB}_{2}\), \(\hbox {MgB}_{2} + 0.5\) wt% AlN (nano), \(\hbox {MgB}_{1.99}\hbox {C}_{0.01}\) and \(\hbox {MgB}_{1.99}\hbox {C}_{0.01} + 0.5\) wt% AlN (nano) have been synthesized by a solid reaction process under inert atmosphere. The transition temperature (\(T_{\mathrm{C}})\) estimated from resistivity measurement indicates only a small decrease for C (nano) and co-doped \(\hbox {MgB}_{2}\) samples. The magnetic field response of investigated samples has been measured at 4, 10, and 20 K in the field range ± 6 T. \(\hbox {MgB}_{2}\) pellets co-doped with 0.5 wt% n-AlN and 1 wt% n-C display appreciable enhancement in critical current density (\(J_\mathrm{C}\)) of \(\hbox {MgB}_{2}\) in both low (\(\ge 3\)  times), as well as, high-field region (\(\ge \) 15 times). \(J_\mathrm{C}\) versus H behavior of both pristine and doped \(\hbox {MgB}_{2}\) pellets is well explained in the light of the collective pinning model. Further, the normalized pinning force density \(f_\mathrm{p}(= F_\mathrm{p}/F_{\mathrm{pmax}})\) displays a fair correspondence with the scaling procedure proposed by Eisterer et al. Moreover, the scaled data of the pinning force density (i.e., \(f_\mathrm{p}{-}h\) data) of the investigated pellets at different temperature are well interpreted by a modified Dew-Hughes expression reported by Sandu and Chee.


\(\hbox {MgB}_{2}\) superconductors Co-doping Critical current density Flux pinning Scaling of pinning force density 


  1. 1.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63–64 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    N. Chikumoto, A. Yamamoto, M. Konczykowski, M. Murakami, Physica C 388–389, 167–168 (2003)CrossRefGoogle Scholar
  3. 3.
    A. Vajpayee, V.P.S. Awana, G.L. Bhalla, H. Kishan, Nanotechnology 19, 125708-1-7 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    G. Serrano, A. Serquis, D. Rodrigues Jr., M.T. Malachevsky, J.M. Espasandin, C. Ayala, J. Phys. Conf. Ser. 97, 0121271–0121277 (2008)Google Scholar
  5. 5.
    O.V. Shcherbakova, A.V. Pan, J.L. Wang, A.V. Shcherbakov, S.X. Dou, D. Wexler, E. Babic’, M. Jercinovi c’, O. Husnjak, Supercond. Sci. Technol. 21, 015005-1-7 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    H. Jiang, Z. Dong, Y. Liu, Z. Ma, L. Yu, Q. Cai, Physica C 480, 67–70 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    M. Mudgel, V.P.S. Awana, R. Lal, H. Kishan, L.S. Sharth Chandra, V. Ganesan, A.V. Narlikar, G.L. Bhalla, J. Phys. Condens. Matter 20, 095205 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Yang, L. Wang, H.H. Sun, C.H. Cheng, Y. Zhao, J. Phys. Chem. Solids 72, 593–596 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    M. Mudgel, L.S. Sharth Chandra, V. Ganesan, G.L. Bhalla, R. Lal, H. Kishan, V.P.S. Awana, J. Appl. Phys. 106, 033904-1-6 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    A. Gurevich, S. Patnaik, V. Braccini, K.H. Kim, C. Mielke, X. Song, L.D. Cooley, S.D. Bu, D.M. Kim, J.H. Choi, L.J. Belenky, J. Giencke, M.K. Lee, W. Tian, X.Q. Pan, A. Siri, E.E. Hellstrom, C.B. Eom, D.C. Larbalestier, Supercond. Sci. Technol. 17, 278–286 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    T.M. Shen, G. Li, C.H. Cheng, Y. Zhao, Supercond. Sci. Technol. 19, 1219–1224 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Zhao, Y. Feng, T.M. Shen, G. Li, Y. Yang, C.H. Cheng, J. Appl. Phys. 100, 123902-1-5 (2006)ADSGoogle Scholar
  13. 13.
    K.S.B. De Silva, X. Xu, X.L. Wang, D. Wexler, D. Attard, F. Xiang, S.X. Dou, Scr. Mater. 67, 802–805 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Zhao, C. Ke, C.H. Cheng, Y. Feng, Y. Yang, P. Munroe, Physica C 470, 1096–1099 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    K.Y. Tan, K.L. Tan, K.B. Tan, K.P. Lim, S.A. Halim, S.K. Chen, J. Supercond. Nov. Magn. 24, 2025–2029 (2011)CrossRefGoogle Scholar
  16. 16.
    G. Aldica, S. Popa, M. Enculescu, P. Badica, Scr. Mater. 68, 428–431 (2013)CrossRefGoogle Scholar
  17. 17.
    Z. Ma, Y. Liu, L. Yu, Q. Zhao, J. Appl. Phys. 104, 113917 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Ma, Y. Liu, W. Hu, Z. Goa, L. Yu, Z.Q. Dong, Scr. Mater. 61, 836–839 (2009)CrossRefGoogle Scholar
  19. 19.
    N. Novosel, S. Galic, D. Pajic, Z. Skoko, I. Loncarek, M. Mustapic, K. Zadro K, E. Babic, Supercond. Sci. Technol. 26, 105024 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    S. Thomas, S. Rahul, K.M. Devadas, N. Varghese, A. Sundaresan, U. Syamaprasad, Mater. Chem. Phys. 148, 190–194 (2014)CrossRefGoogle Scholar
  21. 21.
    Z. Ma, Y. Liu, Q. Cai, J. Supercond. Nov. Magn. 25, 1683–1688 (2012)CrossRefGoogle Scholar
  22. 22.
    D. Tripathi, T.K. Dey, J. Appl. Phys. 114, 093906-1-11 (2013)ADSGoogle Scholar
  23. 23.
    W.K. Yeoh, J.H. Kim, J. Horvat, X. Xu, M.J. Qin, S.X. Dou, C.H. Jiang, T. Nakane, H. Kumakura, P. Munroe, Supercond. Sci. Technol. 19, 596–599 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    D. Tripathi, T.K. Dey, J. Supercond. Nov. Magn. 28, 2025–2032 (2015)CrossRefGoogle Scholar
  25. 25.
    D. Tripathi, S. Maharana, T.K. Dey, Cryogenics 63, 85–93 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    C.P. Bean, Phys. Rev. Lett. 8, 250–253 (1962)ADSCrossRefGoogle Scholar
  27. 27.
    K. Vinod, N. Varghese, R.G. Abhilash, U. Symaprasad, S.B. Roy, J. Alloys Compd. 464, 33–37 (2008)CrossRefGoogle Scholar
  28. 28.
    Q. Cai, Y. Liu, Z. Ma, L. Yu, Physica C 496, 53–57 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    D. Tripathi, T.K. Dey, Physica C 507, 1–9 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    D. Sharma, J. Kumar, A. Vajpayee, R. Kumar, P.K. Ahluwalia, V.P.S. Awana, J. Supercond. Nov. Magn. 24, 1925–1931 (2011)CrossRefGoogle Scholar
  31. 31.
    V. Singh, P. Chauhan, J. Phys. Chem. Solids 70, 1074–1079 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    J. Wang, Y. Bugoslavsky, A. Berenov, L. Cowey, A.D. Caplin, L.F. Cohen, J.L. Macmanus Driscoll, Appl. Phys. Lett. 81, 2026 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    S.K. Chen, Z. Lockman, M. Wei, B.A. Glowacki, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 242501 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    D. Tripathi, T.K. Dey, Indian J. Phys. 88, 1175–1182 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    M.A. Susner, M. Bhatia, M.D. Sumption, E.W. Collings, J. Appl. Phys. 105, 1039161 (2009)CrossRefGoogle Scholar
  36. 36.
    J.M. Rowell, Supercond. Sci. Technol. 16, R17–R27 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    A. Yamamoto, J. Shimoyama, K. Kishio, Teruo Matsushita, Supercond. Sci. Technol. 20, 658–666 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    D. Tripathi, T.K. Dey, J. Supercond. Nov. Magn. 27, 1647–1658 (2014)CrossRefGoogle Scholar
  39. 39.
    E.J. Kramer, J. Appl. Phys. 44, 1360–1370 (1973)ADSCrossRefGoogle Scholar
  40. 40.
    J. Wang, Z.X. Shi, H. Lv, T. Tamegai, Physica C 445–448, 462–465 (2006)CrossRefGoogle Scholar
  41. 41.
    G. Blatter, M.Y. Feigelman, Y.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125–1388 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    V. Sandu, Mod. Phys. Lett. B 26, 1230007 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    T. Higuchi, S.I. Yoo, M. Murakami, Phys. Rev. B 59, 1514–1527 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    M. Eisterer, Phys. Rev. B 77, 144524-1-5 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    D. Dew-Hughes, Philos. Mag. 30, 293–305 (1974)ADSCrossRefGoogle Scholar
  46. 46.
    E.J. Kramer, J. Appl. Phys. 44, 1360–1370 (1973)ADSCrossRefGoogle Scholar
  47. 47.
    S. Keshavarzi, M.J. Qin, S. Soltanian, H.K. Liu, S.X. Dou, Physica C 408–410, 601–602 (2004)CrossRefGoogle Scholar
  48. 48.
    M. Gharaibeh, B.A. Albiss, I. Jumah, I.M. Obaidat, J. Appl. Phys. 107, 063908 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    V. Sandu, C.Y. Chee, J. Supercond. Nov. Magn. 26, 125–131 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Material ScienceJaypee Institute of Information TechnologyNoidaIndia
  2. 2.Cryogenic Engineering CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations