Skip to main content
Log in

The Momentum Distribution of Liquid \(^4\hbox {He}\)

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, we report a high-resolution neutron Compton scattering study of liquid \(^4\hbox {He}\) under milli-Kelvin temperature control. To interpret the scattering data, we performed Quantum Monte Carlo calculations of the atomic momentum distribution and final state effects for the conditions of temperature and density considered in the experiment. There is excellent agreement between the observed scattering and ab initio calculations of its lineshape at all temperatures. We also used model fit functions to obtain from the scattering data empirical estimates of the average atomic kinetic energy and Bose condensate fraction. These quantities are also in excellent agreement with ab initio calculations. We conclude that contemporary Quantum Monte Carlo methods can furnish accurate predictions for the properties of Bose liquids, including the condensate fraction, close to the superfluid transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Oxford University Press, Oxford, 2016)

    MATH  Google Scholar 

  2. P. Pines, P. Nozieres, Theory of Quantum Liquids: Superfluid Bose Liquids (Westview Press, Boulder, 1999)

    Google Scholar 

  3. P.W. Anderson, Basic Notions of Condensed Matter Physics, 2nd edn. (Westview Press, Boulder, 1997)

    Google Scholar 

  4. A. Griffin, D.W. Snoke, S. Stringari, Bose–Einstein Condensation (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  5. A. Griffin, T. Nikuni, E. Zaremba, Bose-Condensed Gases at Finite Temperatures (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  6. D. Snoke, Science 298(5597), 1368 (2002)

    Article  ADS  Google Scholar 

  7. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Science 316(5827), 1007 (2007)

    Article  ADS  Google Scholar 

  8. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. Andre, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang, Nature 443, 409 (2006)

    Article  ADS  Google Scholar 

  9. T. Nikuni, M. Oshikawa, A. Oosawa, H. Tanaka, Phys. Rev. Lett. 84, 5868 (2000)

    Article  ADS  Google Scholar 

  10. S.O. Demokritov, V.E. Demidov, O. Dzyapko, G.A. Melkov, A.A. Serga, B. Hillebrands, A.N. Slavin, Nature 443, 430 (2006)

    Article  ADS  Google Scholar 

  11. H. Deng, H. Haug, Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010)

    Article  ADS  Google Scholar 

  12. J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Nature 468, 545 (2010)

    Article  ADS  Google Scholar 

  13. I. Carusotto, C. Ciuti, Rev. Mod. Phys. 85, 299 (2013)

    Article  ADS  Google Scholar 

  14. V. Graber, N. Andersson, M. Hogg, Int. J. Mod. Phys. D 0, 1730015 (2017)

    Article  Google Scholar 

  15. T. van Zoest, N. Gaaloul, Y. Singh, H. Ahlers, W. Herr, S.T. Seidel, W. Ertmer, E. Rasel, M. Eckart, E. Kajari, S. Arnold, G. Nandi, W.P. Schleich, R. Walser, A. Vogel, K. Sengstock, K. Bongs, W. Lewoczko-Adamczyk, M. Schiemangk, T. Schuldt, A. Peters, T. Könemann, H. Müntinga, C. Lämmerzahl, H. Dittus, T. Steinmetz, T.W. Hänsch, J. Reichel, Science 328(5985), 1540 (2010)

    Article  ADS  Google Scholar 

  16. D. O’Dell, S. Giovanazzi, G. Kurizki, V.M. Akulin, Phys. Rev. Lett. 84, 5687 (2000)

    Article  ADS  Google Scholar 

  17. N.H. Lindner, A. Peres, Phys. Rev. A 71, 024101 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. P.C. Hohenberg, P.M. Platzman, Phys. Rev. 152, 198 (1966)

    Article  ADS  Google Scholar 

  19. P. Martel, E.C. Svensson, A.D.B. Woods, V.F. Sears, R.A. Cowley, J. Low Temp. Phys. 49, 279 (1976)

    Google Scholar 

  20. E.C. Svensson, Los Alamos Report No. LA-10227-C, vol 2, p. 456 (1984)

  21. R.N. Silver, P.E. Sokol, Momentum Distributions (Plenum Press, New York and London, 1989)

    Book  Google Scholar 

  22. H.R. Glyde, Excitations in Liquid and Solid Helium (Clarendon Press, Oxford, 1995)

    Google Scholar 

  23. C. Andreani, D. Colognesi, J. Mayers, G.F. Reiter, R. Senesi, Adv. Phys. 54, 377 (2005)

    Article  ADS  Google Scholar 

  24. R.T. Azuah, W.G. Stirling, H.R. Glyde, P.E. Sokol, S.M. Bennington, Phys. Rev. B 51, 605 (1995)

    Article  ADS  Google Scholar 

  25. R.T. Azuah, W.G. Stirling, H.R. Glyde, M. Boninsegni, P.E. Sokol, S.M. Bennington, Phys. Rev. B 56, 14620 (1997)

    Article  ADS  Google Scholar 

  26. H.R. Glyde, R.T. Azuah, W.G. Stirling, Phys. Rev. B 62, 14337 (2000)

    Article  ADS  Google Scholar 

  27. H.R. Glyde, S.O. Diallo, R.T. Azuah, O. Kiricheck, J.W. Taylor, Phys. Rev. B 84, 184506 (2011)

    Article  ADS  Google Scholar 

  28. S.O. Diallo, J.V. Pearce, R.T. Azuah, O. Kiricheck, J.W. Taylor, H.R. Glyde, Phys. Rev. Lett. 98, 205301 (2007)

    Article  ADS  Google Scholar 

  29. S.O. Diallo, J.V. Pearce, R.T. Azuah, H.R. Glyde, Phys. Rev. Lett. 93, 075301 (2004)

    Article  ADS  Google Scholar 

  30. T.R. Sosnick, W.M. Snow, R.N. Silver, P.E. Sokol, EPL 9, 707 (1989)

    Article  ADS  Google Scholar 

  31. T.R. Sosnick, W.M. Snow, P.E. Sokol, Phys. Rev. B 41, 11185 (1990)

    Article  ADS  Google Scholar 

  32. W.M. Snow, Y. Wang, P.E. Sokol, EPL 19, 403 (1992)

    Article  ADS  Google Scholar 

  33. W.M. Snow, P.E. Sokol, J. Low Temp. Phys. 101, 881 (1995)

    Article  ADS  Google Scholar 

  34. K.W. Herwig, P.E. Sokol, T.R. Sosnick, W.M. Snow, R.C. Bladell, Phys. Rev. B 41, 103 (1990)

    Article  ADS  Google Scholar 

  35. J. Mayers, C. Andreani, D. Colognesi, J. Phys. Condens. Matter 9, 10639 (1997)

    Article  ADS  Google Scholar 

  36. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)

    Article  ADS  Google Scholar 

  37. D.M. Ceperley, E.L. Pollock, Phys. Rev. Lett. 56, 351 (1986)

    Article  ADS  Google Scholar 

  38. E.L. Pollock, D.M. Ceperley, Phys. Rev. B 36, 8343 (1987)

    Article  ADS  Google Scholar 

  39. M. Boninsegni, N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 96, 070601 (2006)

    Article  ADS  Google Scholar 

  40. M. Boninsegni, N. Prokof’ev, B. Svistunov, Phys. Rev. E 74, 036701 (2006)

    Article  ADS  Google Scholar 

  41. T.E. Mason, D. Abernathy, I. Anderson, J. Ankner, T. Egami, G. Ehlers, A. Ekkebus, G. Granroth, M. Hagen, K. Herwig, J. Hodges, C. Hoffmann, C. Horak, L. Horton, F. Klose, J. Larese, A. Mesecar, D. Myles, J. Neuefeind, M. Ohl, C. Tulk, X.L. Wang, J. Zhao, Physica B Condens. Matter 385, 955 (2006)

    Article  ADS  Google Scholar 

  42. R.N. Silver, Phys. Rev. B 38, 2283 (1988)

    Article  ADS  Google Scholar 

  43. R.N. Silver, Phys. Rev. B 39, 4022 (1989)

    Article  ADS  Google Scholar 

  44. C. Carraro, S.E. Koonin, Phys. Rev. Lett. 65, 2792 (1990)

    Article  ADS  Google Scholar 

  45. S. Moroni, S. Fantoni, A. Fabrocini, Phys. Rev. B 58, 11607 (1998)

    Article  ADS  Google Scholar 

  46. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  47. R.A. Aziz, V.P.S. Nain, S. Carley, W.L. Taylor, G.T. McConville, J. Chem. Phys. 70, 4330 (1979)

    Article  ADS  Google Scholar 

  48. Revisions of the original Aziz potential have been published over the past few decades, but the differences are relatively small, and do not affect the value of the condensate fraction to a significant degree. See, for instance, Ref. [49]

  49. S. Moroni, M. Boninsegni, J. Low Temp. Phys. 136, 129 (2004)

    Article  ADS  Google Scholar 

  50. S. Moroni, F. Pederiva, S. Fantoni, M. Boninsegni, Phys. Rev. Lett. 84, 2650 (2000)

    Article  ADS  Google Scholar 

  51. F. Mezzacapo, M. Boninsegni, Phys. Rev. Lett. 97, 217 (2006)

    Article  Google Scholar 

  52. F. Mezzacapo, M. Boninsegni, Phys. Rev. A 75, 033201 (2007)

    Article  ADS  Google Scholar 

  53. C.F. Barenghi, R.J. Donnelly, J. Chem. Phys. Ref. Data 27, 217 (1998)

    Google Scholar 

  54. K.H. Andersen, W.G. Stirling, R. Scherm, A. Stunault, B. Fak, H. Godfrin, A.J. Dianoux, J. Phys. Condens. Matter 6, 821 (1994)

    Article  ADS  Google Scholar 

  55. K.H. Andersen, W.G. Stirling, J. Phys. Condens. Matter 6, 5805 (1994)

    Article  ADS  Google Scholar 

  56. G. Placzek, Phys. Rev. 86, 377 (1952)

    Article  ADS  Google Scholar 

  57. V.F. Sears, Phys. Rev. B 30, 44 (1984)

    Article  ADS  Google Scholar 

  58. R. Feltgen, H. Kirst, K.A. Köhler, H. Pauly, F. Torello, J. Chem. Phys. 76, 2360 (1982)

    Article  ADS  Google Scholar 

  59. K.H. Andersen, W.G. Stirling, H.R. Glyde, Phys. Rev. B 56, 8978 (1997)

    Article  ADS  Google Scholar 

  60. H.A. Gersch, L.J. Rodriguez, Phys. Rev. A 8, 905 (1973)

    Article  ADS  Google Scholar 

  61. F. Mazzanti, J. Boronat, A. Polls, Phys. Rev. B 53, 5661 (1996)

    Article  ADS  Google Scholar 

  62. F. Mazzanti, A. Polls, J. Boronat, J. Casulleras, Phys. Rev. Lett. 92, 085301 (2004)

    Article  ADS  Google Scholar 

  63. A.S. Rinat, M.F. Taragin, F. Mazzanti, A. Polls, Phys. Rev. B 57, 5347 (1998)

    Article  ADS  Google Scholar 

  64. R.N. Silver, G. Reiter, Phys. Rev. B 35, 3647 (1987)

    Article  ADS  Google Scholar 

  65. S. Stringari, Phys. Rev. B 35, 2038 (1987)

    Article  ADS  Google Scholar 

  66. T.R. Sosnick, W.M. Snow, R.N. Silver, P.E. Sokol, Phys. Rev. B 43, 216 (1991)

    Article  ADS  Google Scholar 

  67. K.W. Herwig, P.E. Sokol, W.M. Snow, R.C. Blasdell, Phys. Rev. B 44, 308 (1991)

    Article  ADS  Google Scholar 

  68. M.S. Bryan, T.R. Prisk, R.T. Azuah, W.G. Stirling, P.E. Sokol, EPL 115(6), 66001 (2016)

    Article  ADS  Google Scholar 

  69. J.J. Weinstein, J.W. Negele, Phys. Rev. Lett. 49, 1016 (1982)

    Article  ADS  Google Scholar 

  70. D.L. Abernathy, M.B. Stone, M.J. Loguillo, M.S. Lucas, O. Delaire, X. Tang, J.Y.Y. Lin, B. Fultz, Rev. Sci. Instrum. 83, 015114 (2012)

    Article  ADS  Google Scholar 

  71. M.B. Stone, J.L. Niedziela, D.L. Abernathy, L. DeBeer-Schmitt, G. Ehlers, O. Garlea, G.E. Granroth, M. Graves-Brook, A.I. Kolesnikov, A. Podlesnyak, B. Winn, Rev. Sci. Instrum. 85, 045113 (2016)

    Article  ADS  Google Scholar 

  72. D. Abernathy, J. Niedziela, M. Stone, EPJ Web Conf. 83, 03001 (2015)

    Article  Google Scholar 

  73. P.F. Peterson, S.I. Campbell, M.A. Reuter, R.J. Taylor, J. Zikovsky, Nuclear instruments and methods in physics research section A: accelerators. Spectrom. Detect. Assoc. Equip. 803, 24 (2015)

    Article  Google Scholar 

  74. O. Arnold, J.C. Bilheux, J.M. Borreguero, A. Buts, S. Cambell, L. Chapon, M. Coucet, N. Draper, R. Ferraz Leal, M.A. Gigg, V. Lynch, A. Markvardsen, D.J. Mikkelson, R.L. Mikkelson, R. Miller, K. Palmen, P. Parker, G. Passos, T. Perring, P. Peterson, S. Ren, M.A. Reuter, A.T. Savici, J.W. Taylor, R.J. Taylor, R. Tolchenov, W. Zhou, J. Zikovsky, Nucl. Instrum. Methods Phys. Res. A 764, 156 (2014)

    Article  ADS  Google Scholar 

  75. R.T. Azuah, L.R. Kneller, Y. Qiu, P.L.W. Tregenna-Piggott, C.M. Brown, J.R.D. Copley, R.M. Dimeo, J. Res. Natl. Inst. Stand. Technol. 114, 341 (2009)

    Article  Google Scholar 

  76. G.E. Granroth, D.L. Abernathy, ICANS-XVI Proceedings, p. 289 (2003)

  77. G.E. Granroth, https://github.com/granrothge/mcstas/blob/master/for_v_2/instruments/arcs_full.instr

  78. K. Lefman, K. Nielsen, Neutron News 10, 20 (1999)

    Article  Google Scholar 

  79. P. Willendrup, E. Farhi, K. Lefmann, Physica B 250, 735 (2004)

    Article  Google Scholar 

  80. S. Diallo, J. Lin, D. Abernathy, R. Azuah, Nuclear instruments and methods in physics research section A: accelerators. Spectrom. Detect. Assoc. Equip. 835, 34 (2016)

    Article  Google Scholar 

  81. P. Whitlock, R. Panoff, Can. J. Phys. 65, 1409 (1987)

    Article  ADS  Google Scholar 

  82. E. Farhi, V. Hugouvieux, M. Johnson, W. Kob, J. Comput. Phys. 228(14), 5251 (2009)

    Article  ADS  Google Scholar 

  83. D.S. Sivia, R.N. Silver, in Momentum Distributions, ed. by R.N. Silver, P.E. Sokol (Plenum Press, Berlin, 1989), pp. 377–380

  84. R. Rota, J. Boronat, J. Low Temp. Phys. 166, 21 (2012)

    Article  ADS  Google Scholar 

  85. S. Giorgini, L. Pitaevskii, S. Stringari, J. Low Temp. Phys. 89, 449 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to David Sprinkle of Indiana University for lending his expertise to the design, construction, and testing of the cyrogenics built for this study. Saad Elorfi and Mark Loguillo of the Spallation Neutron Source provided technical support for this experiment. We also recognize helpful scientific discussions with Doug Abernathy, Richard Azuah, Souleymane Diallo, Jiao Lin, Matthew Stone, and Peter Willendrup. This report was prepared, in part, by Indiana University under award 70NANB10H255 from the National Institute of Standards and Technology. Matthew S. Bryan acknowledges support under NSF grant DGE-1069091. This research at ORNL’s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, as well as by the Natural Science and Engineering Research Council of Canada. Computing support from Westgrid is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Prisk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prisk, T.R., Bryan, M.S., Sokol, P.E. et al. The Momentum Distribution of Liquid \(^4\hbox {He}\) . J Low Temp Phys 189, 158–184 (2017). https://doi.org/10.1007/s10909-017-1798-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1798-7

Keywords

Navigation