Journal of Low Temperature Physics

, Volume 189, Issue 1–2, pp 76–83 | Cite as

Quantum Gas of Polar Molecules Ensembles at Ultralow Temperatures: f-wave Superfluids

Article

Abstract

We investigate novel f-wave superfluids of fermionic polar molecules in a two-dimensional bilayer system with dipole moments polarized perpendicular to the layers and in opposite directions in different layers. The solution of the BCS gap equation reveals that these unconventional superfluids emerge at temperatures on the level of femtokelvin which opens up new possibilities to explore the topological \(f+i f\) phase, quantum interferometry and Majorana fermions in experiments with ultracold polar molecules. The experimental realization of such interesting novel f-wave pairings is discussed.

Keywords

Polar molecules Fermions Bilayers f-wave scattering Gap equation Critical temperature 

References

  1. 1.
    H. Kamerlingh Onnes, Konink. Akad. Wetensch. Amsterdam, Proc. 13, 1093 (1911)Google Scholar
  2. 2.
    P. Kapitza, Nature 141, 74 (1938)ADSCrossRefGoogle Scholar
  3. 3.
    S. Chu, Rev. Mod. Phys. 70, 685 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    C.N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    W.D. Phillips, Rev. Mod. Phys. 70, 721 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    E.A. Cornell, C.E. Wieman, Rev. Mod. Phys. 74, 875 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    B. DeMarco, D.S. Jin, Science 285, 1703 (1999)CrossRefGoogle Scholar
  9. 9.
    A.E. Leanhardt, T.A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D.E. Pritchard, W. Ketterle, Science 301, 5639 (2003)CrossRefGoogle Scholar
  10. 10.
    L. Wang, P. Zhang, X.-Z. Chen, Z.-Y. Ma, J. Phys. B At. Mol. Opt. Phys. 46, 195302 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    T. Luan, L. Hepeng Yao, C.L. Wang, S. Yang, X. Chen, Z. Ma, Opt. Express 23, 11378 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    A.K. Fedorov, S.I. Matveenko, V.I. Yudson, G.V. Shlyapnikov, Sci. Rep. 6, 27448 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    A. Boudjemâa, Phys. Lett. A 381, 1745 (2017)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Pikovski, M. Klawunn, G.V. Shlyapnikov, L. Santos, Phys. Rev. Lett. 105, 215302 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    A.C. Potter, E. Berg, D.-W. Wang, B.I. Halperin, E. Demler, Phys. Rev. Lett. 105, 220406 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    M.A. Baranov, A. Micheli, S. Ronen, P. Zoller, Phys. Rev. A 83, 043602 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    N.T. Zinner, B. Wunsch, D. Pekker, D.-W. Wang, Phys. Rev. A 85, 013603 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    J.A. Sauls, Phys. Rev. B 34, 4861 (1986)ADSCrossRefGoogle Scholar
  19. 19.
    L. Mao, J. Shi, Q. Niu, C. Zhang, Phys. Rev. Lett. 106, 157003 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    W.-C. Lee, W. Congjun, S.D. Sarma, Phys. Rev. A 82, 053611 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    H.-H. Hung, W.-C. Lee, W. Congjun, Phys. Rev. B 83, 144506 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    N. Hao, G. Liu, W. Ning, H. Jiangping, Y. Wang, Phys. Rev. A 87, 053609 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    See for review, M.A. Baranov, Phys. Rep. 464, 71 (2008)Google Scholar
  24. 24.
    See for review, T. Lahaye et al., Rep. Prog. Phys. 72, 126401 (2009)Google Scholar
  25. 25.
    See for review, L.D. Carr, D. DeMille, R.V. Krems, J. Ye, New J. Phys. 11, 055049 (2009)Google Scholar
  26. 26.
    See for review, M.A. Baranov, M. Delmonte, G. Pupillo, P. Zoller, Chem. Rev. 112, 5012 (2012)Google Scholar
  27. 27.
    K.-K. Ni, S. Ospelkaus, M.H.G. de Miranda, A. Peér, B. Neyenhuis, J.J. Zirbel, S. Kotochigova, P.S. Julienne, D.S. Jin, J. Ye, Science 322, 231 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, S. Inouye, Phys. Rev. Lett. 105, 203001 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, M. Weidemüller, Phys. Rev. Lett. 101, 133004 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    K.A. Kuns, A.M. Rey, A.V. Gorshkov, Phys. Rev. A 84, 063639 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    M. Greiner, C. Regal, D. Jin, Nature 426, 537 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    C. Chin et al., Science 305, 1128 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    M. Zwierlein et al., Nature 435, 1047 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    K. Miyake, Prog. Theor. Phys. 69, 1794 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    Z.-K. Lu, G.V. Shlyapnikov, Phys. Rev. A 85, 023614 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    K.-K. Ni, S. Ospelkaus, D.J. Nesbitt, J. Ye, D.S. Jin, Phys. Chem. Chem. Phys. 11, 9626 (2009)CrossRefGoogle Scholar
  37. 37.
    T. van Zoest et al., Science 328, 5985 (2010)Google Scholar
  38. 38.
    H. Müntinga et al., Phys. Rev. Lett. 110, 093602 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    J. Rudolph et al., New J. Phys. 17, 065001 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    R. Kuhl, P. Preu, M. Roth, R. Forke, W. Dreier, 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 5–8 January 2009, OrlandoGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratory of Mechanics and EnergyHassiba Benbouali University of ChlefChlefAlgeria

Personalised recommendations