Journal of Low Temperature Physics

, Volume 189, Issue 1–2, pp 53–59 | Cite as

Laser-Induced Breakdown in Liquid Helium

Article
  • 172 Downloads

Abstract

We report on experiments in which focused laser light is used to induce optical breakdown in liquid helium-4. The threshold intensity has been measured over the temperature range from 1.1 to 2.8 K with light of wavelength 1064 nm. In addition to the measurement of the threshold, we have performed experiments to study how the breakdown from one pulse modifies the probability that a subsequent pulse will result in breakdown.

Keywords

Liquid helium Laser breakdown Superfluidity 

References

  1. 1.
    F. Morgan, L.R. Evans, C.G. Morgan, J. Phys. D 4, 225 (1971)ADSCrossRefGoogle Scholar
  2. 2.
    C.G. Morgan, Rep. Prog. Phys. 38, 621 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    C.G. Morgan, Y.E.E-D. Gamal, J. Phys. D 13, 1447 (1980)Google Scholar
  4. 4.
    S. Augst, D.D. Meyerhofer, D. Strickland, S.L. Chin, J. Opt. Soc. Am. B 8, 858 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    G. Winterling, W. Heinicke, K. Dransfeld, Phys. Rev. 185, 285 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    Private communication from Paul LeidererGoogle Scholar
  7. 7.
    A.V. Benderskii, R. Zadoyan, N. Schwentner, V.A. Apkarian, J. Chem. Phys. 110, 1542 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    J. Gao, A. Marakov, W. Guo, B.T. Pawlowski, S.W. Van Sciver, G.G. Ihas, D.N. McKinsey, W.F. Vinen, Rev. Sci. Inst. 86, 093904 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Y.B. Zel’dovich, Y.B. Raizer, Sov. Phys. JETP 20, 772 (1965)Google Scholar
  10. 10.
    L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)MathSciNetGoogle Scholar
  11. 11.
    M. Silver, J.P. Hernandez, D.G. Onn, Phys. Rev. A 1, 1268 (1970)ADSCrossRefGoogle Scholar
  12. 12.
    D.G. Onn, M. Silver, Phys. Rev. 183, 295 (1969)ADSCrossRefGoogle Scholar
  13. 13.
    J.P. Hernandez, M. Silver, Phys. Rev. A 2, 1949 (1970)ADSCrossRefGoogle Scholar
  14. 14.
    I.I. Abrikosova, O.M. Bochkova, JETP Lett. 9, 167 (1969)ADSGoogle Scholar
  15. 15.
    I.I. Abrikosova, N.S. Skrypnik, Sov. Phys. JETP 32, 34 (1971)ADSGoogle Scholar
  16. 16.
    I.I. Abrikosova, B.V. Anushkov, Zh Eksp, Teor. Fiz. 64, 1141 (1973)Google Scholar
  17. 17.
    S. Hunklinger, P. Leiderer, Z. Naturforschung A 26, 587 (1971)Google Scholar
  18. 18.
    See reference 7 of reference 16Google Scholar
  19. 19.
    C.M. Surko, F. Reif, Phys. Rev. 175, 229 (1968)ADSCrossRefGoogle Scholar
  20. 20.
    D.N. McKinsey, C.R. Brome, J.S. Butterworth, S.N. Dzhosyuk, P.R. Huffman, C.E.H. Mattoni, J.M. Doyle, R. Golub, K. Habicht, Phys. Rev. A 59, 200 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    J.W. Keto, F.J. Soley, M. Stockton, W.A. Fitzsimmons, Phys. Rev. Lett. 28, 792 (1972)ADSCrossRefGoogle Scholar
  22. 22.
    EKSLPA, Savanoriu Avenue 237, LT-02300 Vilnius, LithuaniaGoogle Scholar
  23. 23.
    D.N. McKinsey, W.H. Lippincott, J.A. Kikkel, W.G. Rellergert, Phys. Rev. Lett. 95, 111101 (2005).fsGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of PhysicsBrown UniversityProvidenceUSA
  2. 2.Department of PhysicsCalifornia Institute of technologyPasadenaUSA

Personalised recommendations