Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 749–756 | Cite as

Polarizability of Methane Deposits

  • A. Aldiyarov
  • A. Drobyshev
  • D. Sokolov
  • A. Shinbayeva


This paper presents results of an experimental study of the influence of deposition temperature on the refractive indices of methane in the form of cryovacuum deposited thin films. The experiments were performed in the vicinity of temperature of methane phase transition \(T=20.4\)  K. The results allowed to determine the polarizability of methane molecules in the solid phase. The measurements were taken using a two-beam laser interferometer in the temperature range of 14–32 K. Calculations of polarizability were performed using the Lorentz–Lorenz equation by analogy to the calculations of the polarizability of carbon dioxide carried out in Domingo’s article. The polarizability of methane demonstrates the dependence on deposition temperature, and it has small jump at the temperature of a structural phase transformation. It is speculated that the observed abrupt change in the refractive index is due to a difference in the numbers of vibrational and rotational degrees of freedom of the molecules belonging to different structural phases of the methane.


Methane Thin films Polarizability Refractive index Density Substrate Low temperature Phase transition 



This research was supported by the Ministry of Education and Science of the Republic of Kazakhstan, Program of special foundation of science research.


  1. 1.
    F. Torrens, G. Castellano, Algorithms 2, 437 (2009). doi: 10.3390/a2010437 CrossRefGoogle Scholar
  2. 2.
    A.J. Nijman, A.J. Berlinsky, Can. J. Phys. 58, 1049 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    T. Yamamoto, Y. Kataoka, K. Okada, J. Chem. Phys. 66, 2701 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    M.S. Costantino, W.B. Daniels, J. Chem. Phys. 62, 764 (1975)ADSCrossRefGoogle Scholar
  5. 5.
    A. Drobyshev, A. Aldiyarov et al., Low Temp. Phys. 41, 429 (2015). doi: 10.1063/1.4922092 ADSCrossRefGoogle Scholar
  6. 6.
    M.A. Satorre, M. Domingo, C. Millan, R. Luna, R. Vilaplana, C. Santonja, Planet. Space Sci. 56, 1748 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    P.A. Gerakines, R.L. Hudson, Astrophys. J. Lett. 805(2), L20 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    R. Brunetto, G. Caniglia, G.A. Baratta, M.E. Palumbo, Astrophys. J. 686, 1480 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    J. Pearl, N. Ngoh, M. Ospina, R. Khanna, J. Geophys. Res. 96, 477 (1991)ADSGoogle Scholar
  10. 10.
    J. Martonchik, G. Orton, Appl. Opt. 33(16), 8306–8317 (1994). doi: 10.1364/AO.33.008306 ADSCrossRefGoogle Scholar
  11. 11.
    J.A. Roux, B.E. Wood, A.M. Smith, R.R. Plyler, Arnold Engineering Development Center Int. Rep. Arnold Air Force Base: AEDC (1980). AEDC-TR-79Google Scholar
  12. 12.
    M. Domingo, R. Luna, M.A. Satorre, C. Santonja, C. Millán, J. Low Temp. Phys. 181, 1 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M. Bouilloud, N. Fray, Y. Benilan, H. Cottin, M.-C. Gazeau, A. Jolly, Oxf. J. Sci. Math. V 451(2), 2145 (2015)Google Scholar
  14. 14.
    A.J. Nijman, N.J. Trappeniers, Chem. Phys. Lett. 47, 188 (1977)ADSCrossRefGoogle Scholar
  15. 15.
    C. Bu, J. Shi, U. Raut, E.M. Mitchell, R.A. Baragiola, J. Chem. Phys. 142, 134702 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    A. Drobyshev, A. Aldiyarov, D. Sokolov, FNT 43(6) (2017)Google Scholar
  17. 17.
    A.J. Nijman, N.J. Trappeniers, Phys. B 95, 147 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations