Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 734–741 | Cite as

Hall Resistivity Correlations in Disordered Electron-Doped \(\hbox {Nd}_{2-x}\hbox {Ce}_x\hbox {CuO}_{4+\delta }\) Films

  • T. Charikova
  • N. Shelushinina
  • G. Harus
  • D. Petukhov
  • O. Petukhova
  • A. Ivanov


The resistivity tensor correlations \(\rho _{xy}(B)\sim \) \([\rho _{xx}(B)]^\beta \) for the mixed state magnetic field dependencies of the resistivity tensor of electron-doped \(\hbox {Nd}_{2-x}\hbox {Ce}_x\hbox {CuO}_{4+\delta }\)/SrTiO\(_3\) single-crystal films near the antiferromagnetic–superconducting phase transition and with varying degree of disorder (\(\delta \)) were studied. The decrease of \(\beta \) from 1.2 ± 0.2 at x = 0.14 to 0.6 ± 0.1 at x = 0.15 points out on the evidence of the change from the anisotropic s-wave to the d-wave pairing symmetry in the external magnetic field at the transition from underdoped to optimally doped region. Peculiarities of the power law dependence of the vortex motion in the mixed state can be connected with some features of the non-stoichiometric disorder in layered electron-doped superconductors.


Electron-doped superconducting film Mixed state Magnetoresistivity and Hall effect 



The research was carried within the state assignment of FASO of Russia (theme “Electron” N. 01201463326), supported in part by the Program of fundamental research of the UB of RAS (Project N. 15-8-2-6) with partial support of RFBR (Grant N. 15-02-02270).


  1. 1.
    C. Weber, K. Haule, G. Kotliar, Strength of correlations in electron-and hole-doped cuprates. Nat. Phys. 6, 574–578 (2011)CrossRefGoogle Scholar
  2. 2.
    H. Takagi, S. Uchida, Y. Tokura, Superconductivity produced be electron doping in CuO\(_2\)—layered compounds. Phys. Rev. Lett. 62, 1197–1200 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    N.P. Armitage, P. Fournier, R.L. Greene, Progress and perspectives on the electron-doped cuprates. Rev. Mod. Phys. 82, 2421–2487 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    J. Zhao, F.C. Niestemski, S. Kunwar, S. Li, P. Steffens, A. Hiess, H.J. Kang, S.D. Wilson, Z. Wang, P. Dai, V. Madhavan, Electron-spin coupling in an electron-doped copper oxide superconductor. Nat. Phys. 7, 719–724 (2011)CrossRefGoogle Scholar
  5. 5.
    A.A. Ivanov, S.G. Galkin, A.V. Kuznetsov, A.P. Menushenkov, Smooth homogeneous HTSC thin films produced by laser deposition with flax separation. Phys. C 180, 69–72 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    T.B. Charikova, A.I. Ponomarev, G.I. Harus, N.G. Shelushinina, A.O. Tashlykov, A.V. Tkach, A.A. Ivanov, Quasi-two-dimensional transport properties of the layered superconductor \(\text{ Nd }_{2-x}\text{ Ce }_x\text{ CuO }_{4+\delta }\). J. Exp. Theor. Phys. 105, 626–635 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    T. Charikova, A.N. Ignatenkov, A.I. Ponomarev, N.G. Shelushinina, G.I. Harus, A.A. Ivanov, T.W. Klimchuk, W. Sadowski, Influence of the annealing conditions on the resistivity of \(\text{ Nd }_2\text{ CuO }_4\) single crystals. Mol. Phys. Rep. 36, 99–103 (2002)Google Scholar
  8. 8.
    T. Charikova, A. Ponomarev, A. Ignatenkov, N. Shelushinina, K. Redkina, A. Tashlykov, A. Ivanov, Effect of nonstoichiometric disorder on the transport properties of \(\text{ Nd }_{2-x}\text{ Ce }_x\text{ CuO }_{4+\delta }\) single crystal films. Phys. C 408–410, 372–373 (2004)CrossRefGoogle Scholar
  9. 9.
    L. Alff, Y. Krockenberger, B. Welter, M. Schonecke, R. Gross, D. Manske, M. Naito, A hidden pseudogap under the ’dome’ of superconductivity in electron-doped high-temperature superconductors. Nature 422, 698–701 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    M. Capone, G. Kotliar, Competition between \(d\)-wave superconductivity and antiferromagnetism in the two-dimensional Habbard model. Phys. Rev. B 74(5), 054513 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    J. Otsuki, H. Haferman, A. Lichtenstein, Superconductivity, antiferromagnetism, and phase separation in the two-dimensional Habbard model: a dual-fermion approach. Phys. Rev. B 90(12), 235132 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    N.P. Armitage, F. Ronning, D.H. Lu, C. Kim, A. Damascelli, K.M. Shen, D.L. Feng, H. Eisaki, Z.-X. Shen, P.K. Mang, N. Kaneko, M. Greven, Y. Onose, Y. Taguchi, Y. Tokura, Doping dependence of an \(n\)-type cuprate superconductor investigated by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 88(4), 257001 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    H. Matsui, K. Terashima, T. Sato, T. Takahashi, S.-C. Wang, H.-B. Yang, H. Ding, T. Uefuji, K. Yamada, angle-resolved photoemission spectroscopy of the antiferromagnetic superconductor \(\text{ Nd }_{1.87}\text{ Ce }_{0.13}\text{ CuO }_4\): anisotropic spin-correlation gap, pseudo-gap, and the induced quasiparticle mass enhancement. Phys. Rev. Lett. 94(4), 047005 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    T.B. Charikova, N.G. Shelushinina, G.I. Harus, V.N. Neverov, D.S. Petukhov, O.E. Petukhova, A.A. Ivanov, Doping effect on the evolution of the pairing symmetry in \(n\)-type superconductor near antiferromagnetic phase boundary. Low Temp. Phys. 41, 125–128 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    T.B. Charikova, N.G. Shelushinina, G.I. Harus, D.S. Petukhov, A.A. Ivanov, Upper critical field in electron-doped superconductor with nonstoichiometric disorder near antiferromagnetic-superconducting phase boundary. Solid State Phenom. 215, 77–82 (2014)CrossRefGoogle Scholar
  16. 16.
    T.B. Charikova, N.G. Shelushinina, G.I. Harus, D.S. Petukhov, O.E. Petukhova, A.A. Ivanov, Resistivity tensor correlations in the mixed state of electron-doped superconductor \(\text{ Nd }_{2-x}\text{ Ce }_x\text{ CuO }_{4+\delta }\). Phys. C 525–526, 78–83 (2016)CrossRefGoogle Scholar
  17. 17.
    P.A. Lee, T.V. Ramakrishnan, Disordered electronic systems. Rev. Mod. Rhys. 57, 287–337 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    M. Cagigal, J. Fortcuberta, M.A. Crusellas, J.L. Vicent, S. Pinol, Scaling of the longitudinal and Hall resistivities in superconducting L\(_{2-x}\text{ Ce }_x\text{ CuO }_{4}\) (L = Nd, Sm) single crystal. Phys. C 248, 155–161 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    N.B. Kopnin, G.E. Volovik, Flux-flow in \(d\)-wave superconductors: low temperature universality and scaling. Phys. Rev. Lett. 79, 1377–1380 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    V.M. Vinokur, V.B. Geshkenbein, M.V. Feigel’man, G. Blatter, Scaling of the Hall resistivity in high-T\(_{c}\) superconductors. Phys. Rev. Lett. 71, 1242–1245 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    Z.D. Wang, J. Dong, C.S. Ting, Unified theory of mixed stste Hall effect in type-II superconductors: scaling behavior and sign reversal. Phys. Rev. Lett. 72, 3875–3878 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    N.B. Kopnin, V.M. Vinokur, Pinning on the flux flow Hall resistivity. Phys. Rev. Lett. 83, 4864–4867 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Yeshurun, A.P. Malozemoff, Giant flux creep and irreversibility in an Y-Ba-Cu-O crystal an alternative to the superconducting-glass model. Phys. Rev. Lett. 60, 2202–2205 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    M. Tinkham, Resistive transition of high-temperature superconductors. Phys. Rev. Lett. 61, 1658–1661 (1988)ADSCrossRefGoogle Scholar
  25. 25.
    A. Guarino, A. Leo, G. Grimaldi, N. Martucciello, C. Dean, M.N. Kunchur, S. Pace, A. Nigro, Pinning mechanism in electron-doped HTS \(\text{ Nd }_{1.85}\text{ Ce }_{0.15}\text{ CuO }_{4-\delta }\) epitaxial films. Supercond. Sci. Technol. 27(5), 124011 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • T. Charikova
    • 1
    • 2
  • N. Shelushinina
    • 1
  • G. Harus
    • 1
  • D. Petukhov
    • 1
  • O. Petukhova
    • 1
  • A. Ivanov
    • 3
  1. 1.M.N. Mikheev Institute of Metal Physics Ural Branch of RASYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia
  3. 3.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations