Advertisement

Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 523–530 | Cite as

Dynamics of Nonplanar Quantized Vortex Rings Before Reconnection at Finite Temperatures

  • V. A. Andryushchenko
  • L. P. Kondaurova
  • S. K. Nemirovskii
Article

Abstract

The paper presents a numerical study of the dynamics of nonplanar quantized vortices at finite temperatures on their route to reconnection. We perform numerical simulations using the vortex filament method, solving the full Biot–Savart equation at a wide range of temperatures and initial conditions. We consider the dynamics of the two rings, lying initially in different planes and at different distances. The angles between planes are taken as equal to 30\(^{\circ }\), 45\(^{\circ }\), 60\(^{\circ }\), and 90\(^{\circ }\). It is observed that the temperature and the initial position of the vortices strongly affect the dynamics of the vortices on their route to reconnection. However, when the distances between the vertices of the vortices become smaller than the distances satisfying the Schwarz reconnection criterion, the dynamics of the system change drastically, and this trend is universal. The universality is expressed in the shapes and velocities of the vertices of the vortices.

Keywords

Superfluid helium Quantized vortices Pyramidal vertices Vortex filament method Biot–Savart equation 

References

  1. 1.
    V.A. Andryushchenko, L.P. Kondaurova, S.K. Nemirovskii, J. Low Temp. Phys. 185, 377–383 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    S.K. Nemirovski, Phys. Rep. 524, 3 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Laurie, A.W. Baggaley, J. Low Temp. Phys. 180, 1–2 (2015)CrossRefGoogle Scholar
  4. 4.
    A.T.A.M. de Waele, R.G.K.M. Aarts, Phys. Rev. Lett. 72, 4 (1994)CrossRefGoogle Scholar
  5. 5.
    R. Hanninen, Phys. Rev. B. 88, 054511 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    S. Zuccher, M. Caliari, A.W. Baggaley, C.F. Barenghi, Phys. Fluids. 24, 125108 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    R. Tebbs, A.J. Youd, C.F. Barenghi, J. Low Temp. Phys. 162, 314–321 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    A.J. Allen, S. Zuccher, M. Caliari, N.P. Proukakis, N.G. Parker, C.F. Barenghi, Phys. Rev. A 90, 013601 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    G.P. Bewley et al., PNAS 105, 37 (2008)CrossRefGoogle Scholar
  10. 10.
    M.S. Paoletti, M.E. Fisher, D.P. Lathrop, Phys. D. Non. Phen. 239, 14 (2010)Google Scholar
  11. 11.
    L. Boue, D. Khomenko, V.S. Lvov, I. Procaccia, Phys. Rev. Lett. 111, 145302 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data. 27, 1217 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    L.P. Kondaurova, V.A. Andryushchenko, S.K. Nemirovskii, J. Low Temp. Phys. 150, 415–419 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    K.W. Schwarz, Phys. Rev. B. 31, 5782 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    K.W. Schwarz, Phys. Rev. B. 38, 2398 (1988)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Pumir, E.D. Siggia, Phys. Fluids 30, 1606 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    C.E. Laing, R.L. Ricca, L.S. De Witt, Scientific reports. 5, 9224 (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • V. A. Andryushchenko
    • 1
    • 2
  • L. P. Kondaurova
    • 1
    • 2
  • S. K. Nemirovskii
    • 1
    • 2
  1. 1.Institute of ThermophysicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations