Advertisement

Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 765–770 | Cite as

Higgs Mode in a Trapped Superfluid Fermi Gas

  • Jun Tokimoto
  • Shunji Tsuchiya
  • Tetsuro Nikuni
Article
  • 234 Downloads

Abstract

In quantum many-body systems with spontaneous breaking of a continuous symmetry, Higgs modes emerge as collective amplitude oscillations of order parameters. Recently, Higgs modes have been observed in superconductors and in Bose gases in optical lattices. However, it has yet to be observed in Fermi gases. In the present paper, we use the time-dependent Bogoliubov–de Gennes equations to investigate Higgs amplitude oscillations of the superfluid order parameter in a trapped Fermi gas induced by a sudden changes of the \({ s}\)-wave scattering length. In particular, we investigate the Higgs mode with different values of the initial scattering length and discuss how the frequency and damping of the Higgs mode changes around the unitarity regime.

Keywords

Superfluid Fermi gas Higgs mode Time-dependent Bogoliubov–de Gennes equation 

Notes

Acknowledgements

In this research work, we used the supercomputer of ACCMS, Kyoto University.

References

  1. 1.
    C.M. Varma, J. Low Temp. Phys. 126, 902 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    R. Matsunaga, Y. Hamada, K. Makise, Y. Uzawa, H. Terai, Z. Wang, R. Shimano, Phys. Rev. Lett. 111, 057002 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    R. Sooryakumar, M.V. Klein, Phys. Rev. Lett. 45, 660 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    P.B. Littlewood, C.M. Varma, Phys. Rev. B 47, 4883 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    C. Rüegg, B. Normand, M. Matsumoto, A. Furrer, D.F. McMorrow, K.W. Krämer, H.-U. Güdel, S.N. Gvasaliya, H. Mutka, M. Boehm, Phys. Rev. Lett. 100, 205701 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauß, C. Gross, E. Demler, S. Kuhr, I. Bloch, Nature (London) 487, 454 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    E.A. Yuzbashyan, M. Dzero, V. Gurarie, M.S. Foster, Phys. Rev. A 91, 033628 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    S. Hannibal, P. Kettmann, M.D. Croitoru, A. Vagov, V.M. Axt, T. Kuhn, Phys. Rev. A 91, 043630 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    G.M. Bruun, Phys. Rev. A 90, 023621 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    A.F. Volkov, ShM Kogan, Zh. Eksp. Teor. Fiz. 65, 2038 (1973)Google Scholar
  11. 11.
    V. Gurarie, Phys. Rev. Lett. 103, 075301 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    R.G. Scott, F. Dalfovo, L.P. Pitaevskii, S. Stringari, Phys. Rev. A 86, 053604 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    M. Dzero, E.A. Yuzbashyan, B.L. Altshuler, Europhys. Lett. 85, 20004 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PhysicsTokyo University of ScienceTokyoJapan
  2. 2.Center for General EducationTohoku Institute of TechnologySendaiJapan

Personalised recommendations