Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 611–617 | Cite as

Lagrangian Trajectory of Small Particles in Superfluid He II

Article
  • 115 Downloads

Abstract

Small tracer particles in He II are visualized, and their motions are analyzed. Lagrangian velocity distribution is computed by analyzing the visualized particle images through particle tracking velocimetry technique. We studied how the particle sizes affect the statistics of particle motions.

Keywords

Lagrangian velocity Particle size PTV measurement 

Notes

Acknowledgements

Financial support from the Japan Society for the Promotion of Science (B) 15H039173 and Challenging Exploratory Research 16K14158 is gratefully acknowledged. The generous experimental support of Mr. Akira Hirano and Mr. Daiki Kato was indispensable for our measurements.

References

  1. 1.
    W.F. Vinen, J.J. Niemela, Quantum turbulence. J. Low Temp. Phys. 128, 167 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    L. Skrbek, K.R. Sreenivasan, Developed quantum turbulence and its decay. Phys. Fluids 24, 011301 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    C.F. Barenghi, L. Skrbek, K.R. Sreenivasan, Introduction to quantum turbulence. Proc. Natl. Acad. Sci. USA 111, 4647 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    R.J. Adrian, J. Westerweel, Particle Image Velocimetry (Cambridge University Press, Cambridge, 2011)MATHGoogle Scholar
  5. 5.
    T. Zhang, S.W. Van Sciver, Large-scale turbulent flow around a cylinder in counterflow superfluid 4He. Nat. Phys. 1, 36 (2005)CrossRefGoogle Scholar
  6. 6.
    M. Murakami, T. Takakoshi, M. Maeda, R. Tsukahara, N. Yokota, Application of particle image velocimetry for measuring He II thermal counterflow jets. Cryogenics 49, 543 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Superfluid helium: visualization of quantized vortices. Nature 441, 588 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    M. La Mantia, L. Skrbek, Quantum, or classical turbulence? Europhys. Lett. 105, 46002 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    M. La Mantia, L. Skrbek, Quantum turbulence visualized by particle dynamics. Phys. Rev. B 90, 014519 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    D.N. McKinsey, C.R. Brome, J.S. Butterworth, S.N. Dzhosyuk, P.R. Huffman, C.E.H. Mattoni, J.M. Doyle, R. Golub, K. Habicht, Radiative decay of the metastable \(\text{ He }_2(a^3 \varSigma _u ^+)\) molecule in liquid helium. Phys. Rev. A 59, 200 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    J. Gao, A. Marakov, W. Guo, B.T. Pawlowski, S.W. Van Sciver, G.G. Ihas, D.N. McKinsey, W.F. Vinen, Producing and imaging a thin line of He*2 molecular tracers in helium-4. Rev. Sci. Instrum. 86, 093904 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    M.S. Paoletti, Michael E. Fisher, K.R. Sreenivasan, D.P. Lathrop, Velocity statistics distinguish quantum turbulence from classical turbulence. Phys. Rev. Lett. 101, 154501 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    M. Bourgoin, N.M. Qureshi, C. Baudet, A. Cartellier, C. Gagne, Turbulent transport of finite sized material particles. J. Phys. Conf. Ser. 318, 012005 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Nagoya UniversityChikusa-ku, Nagoya CityJapan

Personalised recommendations