Advertisement

Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 453–458 | Cite as

Low-Temperature Heat Capacity of \(^{4}\)He Films on Graphite

Article

Abstract

Heat capacities of \(^{4}\)He films have been measured at rather low temperatures between 2 and 80 mK and at areal densities between 2 and 24 \(\hbox {nm}^{-2}\). These areal densities correspond to a monolayer fluid and third-layer fluid. For monolayer films, the results do not contradict previous measurements carried out at high temperatures. On the other hand, at some areal densities, small and broad but definite bumps, whose origin has not yet been understood, have been observed around 15 mK. Between 13 and 24 \(\hbox {nm}^{-2}\), the measured heat capacities above 40 mK are proportional to \(T^{2}\) and hardly change with areal density. These behaviors suggest that the second atomic layer does not solidify before the third-layer promotion, at least not into a commensurate solid, such as the so-called 4/7 phase.

Keywords

\(^{4}\)He films Graphite 4/7 phase 

Notes

Acknowledgements

All experimental measurements were performed with commonly used equipment at the Cryogenics Division, Research Facility Center for Science and Technology, University of Tsukuba. This research was supported by Grants-in-Aid for Scientific Research (No. 16K05432) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

  1. 1.
    D.S. Greywall, P.A. Busch, Phys. Rev. Lett. 67, 3535 (1991). doi: 10.1103/PhysRevLett.67.3535 ADSCrossRefGoogle Scholar
  2. 2.
    D.S. Greywall, Phys. Rev. B. 47, 309 (1993). doi: 10.1103/PhysRevB.47.309 ADSCrossRefGoogle Scholar
  3. 3.
    P. Corboz, M. Boninsegni, L. Pollet, M. Troyer, Phys. Rev. B. 78, 245414 (2008). doi: 10.1103/PhysRevB.78.245414 ADSCrossRefGoogle Scholar
  4. 4.
    J. Ahn, H. Lee, Y. Kwon, Phys. Rev. B. 93, 064511 (2016). doi: 10.1103/PhysRevB.93.064511 ADSCrossRefGoogle Scholar
  5. 5.
    S. Nakamura, K. Matsui, T. Mastui, H. Fukuyama, Phys. Rev. B. 94, 180501(R) (2016). doi: 10.1103/PhysRevB.94.180501 ADSCrossRefGoogle Scholar
  6. 6.
    M. Morishita, J. Low Temp. Phys. 171, 664 (2013). doi: 10.1007/s10909-012-0803-4 ADSCrossRefGoogle Scholar
  7. 7.
    D.S. Greywall, Phys. Rev. B 41, 1842 (1990). doi: 10.1103/PhysRevB.41.1842 ADSCrossRefGoogle Scholar
  8. 8.
    D.S. Greywall, Phys. Rev. Lett. 65, 2788 (1990). doi: 10.1103/PhysRevLett.65.2788 ADSCrossRefGoogle Scholar
  9. 9.
    D.S. Greywall, Phys. Rev. Lett. 65, 64 (1990). doi: 10.1103/PhysRevLett.65.64 ADSCrossRefGoogle Scholar
  10. 10.
    M. Morishita, K. Ishida, K. Yawata, H. Nagatani, H. Fukuyama, J. Low Temp. Phys. 110, 351 (1998). doi: 10.1023/A:1022597019453 ADSCrossRefGoogle Scholar
  11. 11.
    M. Morishita, H. Nagatani, H. Fukuyama, Phys. B 284–288, 228 (2000). doi: 10.1016/S0921-4526(99)02464-3 CrossRefGoogle Scholar
  12. 12.
    M. Morishita, H. Nagatani, H. Fukuyama, Phys. Rev. B 65, 104524 (2002). doi: 10.1103/PhysRevB.65.104524 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of Pure and Applied SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations