Advertisement

Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 588–595 | Cite as

Adiabatic Melting Experiment on Helium Mixtures: Status and Prospects

  • A. Sebedash
  • S. Boldarev
  • T. Riekki
  • J. Tuoriniemi
Article

Abstract

We describe the improvements made to our earlier experiment, aiming to cool saturated helium mixtures at the melting pressure to ultra-low temperatures in the microkelvin regime. Cooling is produced by dissolving pure \(^3\)He in the superfluid state to pure \(^4\)He being released from the solid phase within the mixture of isotopes at the melting pressure. The limiting factor for the performance was considered to be the inevitable coupling of the liquid mixture with the surroundings at higher temperatures, such as through the filling line and the sintered surfaces needed for the pre-cooling phase. These issues could be largely eliminated by the new design of the experiment. Results of testing the new components at low temperatures are presented and discussed.

Keywords

Helium mixtures Superfluidity Dilution cooling Solid helium 

Notes

Acknowledgements

Contributions by A. Salmela and J. Rysti, and discussions with M. Paalanen and J. Saunders are appreciated. This work was supported by the EU 7th Framework Programme (FP7/2007–2013, Grant No. 228464 Microkelvin) and by the Academy of Finland through its LTQ CoE Grant No. 250280. This research was undertaken at the OtaNano-Low Temperature Laboratory of Aalto University.

References

  1. 1.
    F. Pobell, Matter and Methods at Low Temperatures (Springer, Berlin, 2007)CrossRefGoogle Scholar
  2. 2.
    D.J. Cousins, S.N. Fisher, A.M. Guenault, R.P. Haley, I.E. Miller, G.R. Pickett, G.N. Plenderleith, P. Skyba, P.Y.A. Thibault, M.G. Ward, J. Low Temp. Phys. 114, 547–570 (1999)Google Scholar
  3. 3.
    A. Sebedash, JETP Lett. 65, 277 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    A. Sebedash, Phys. B 284–288, 325 (2000)CrossRefGoogle Scholar
  5. 5.
    J. Tuoriniemi et al., J. Low Temp. Phys. 129, 531–545 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    A. Sebedash et al., J. Low Temp. Phys. 148, 725–729 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    E.M. Pentti et al., Phys. Rev. B 78, 064509 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    J. Rysti et al., J. Low Temp. Phys. 175, 738–754 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    D.O. Edwards, S. Balibar, Phys. Rev. B 39, 4083–4097 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    C. Pantalei, X. Rojas, D. Edwards, H. Maris, S. Balibar, J. Low Temp. Phys. 159, 452 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    G. Lawes, G. Zassenhaus, S. Koch, E. Smith, J. Reppy, J. Parpia, Rev. Sci. Instrum. 69, 4176 (1998)Google Scholar
  12. 12.
    V. Arp, Heat Transport through helium II. Cryogenics 10, 96–105 (1970)ADSCrossRefGoogle Scholar
  13. 13.
    A. Sebedash et al., J. Low Temp. Phys. 150, 181–186 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    R. König, A. Betat, L. Roobol, A. Voncken, F. Pobell, J. Low Temp. Phys. 101, 107 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    L.A. Melnikovsky, J. Low Temp. Phys. 150, 174–180 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Applied PhysicsAalto UniversityAaltoFinland
  2. 2.P. L. Kapitza Institute for Physical Problems RASMoscowRussia

Personalised recommendations