Advertisement

Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 361–368 | Cite as

Measurements of the Complex Permittivity of Liquid Helium-4 in the Millimeter Wave Range by a Whispering Gallery Mode Resonator

  • A. V. Smorodin
  • A. S. Rybalko
  • D. Konstantinov
Article

Abstract

We report an experimental study of the electrical properties of liquid helium-4 in the temperature range 1.2–3 K. The experiment is carried out in the millimeter wave range using a whispering gallery mode dielectric resonator, and the complex permittivity of liquid helium is extracted from the data using the resonant perturbation method. The results for the temperature dependence of the dielectric constant are consistent with the previous studies. In addition, we find strong enhancement of the loss tangent around the superfluid transition temperature.

Keywords

Dielectric constant and loss tangent of liquid helium Millimeter waves Whispering gallery mode resonator 

Notes

Acknowledgements

The work was supported by an internal Grant from the Okinawa Institute of Science and Technology (OIST) Graduate University. A.S.R. was supported as a visiting researcher by the Okinawa Institute of Science and Technology (OIST) Graduate University.

References

  1. 1.
    A. Rybalko, E. Rudavskii, S. Rubets, V. Tikhiy, V. Dergach, S. Tarapov, J. Low Temp. Phys. 148, 527 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    A. Rybalko, S. Rubets, E. Rudavskii, V. Tikhiy, S. Tarapov, R. Golovashchenko, V. Derkach, Phys. Rev. B 76, 140503 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    A. Rybalko, S. Rubets, E. Rudavskii, V. Tikhiy, Y. Poluectov, R. Golovashchenko, V. Dergach, S. Tarapov, O. Usatenko, J. Low Temp. Phys. 158, 244 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    W.H. Keesom, Helium, 321 (Elsevier Publishing Company Inc., Amsterdam, 1942)Google Scholar
  5. 5.
    C.E. Chase, E. Maxwell, W.E. Millett, Physica 27, 1129 (1961)ADSCrossRefGoogle Scholar
  6. 6.
    R.F. Harris-Lowe, K.A. Smee, Phys. Rev. A 2, 158 (1970)ADSCrossRefGoogle Scholar
  7. 7.
    H.A. Kierstead, J. Low Temp. Phys. 23, 791 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    M. Chan, M. Ryschkewitsch, H. Meyer, J. Low Temp. Phys. 26, 211 (1977)ADSCrossRefGoogle Scholar
  9. 9.
    J.J. Niemela, R.J. Donnelly, J. Low Temp. Phys. 98(1/2), 1 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    C.J. Grebenkemper, J.P. Hagen, Phys. Rev. 80(1), 89 (1950)ADSCrossRefGoogle Scholar
  12. 12.
    E.M. Ganapolskii, A.V. Golik, A.P. Korolyuk, Phys. Rev. B 51, 962 (1995)CrossRefGoogle Scholar
  13. 13.
    D. Cros, P. Guillon, IEEE Trans. Microwave Theory Tech. 38, 1667 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    L. Rayleigh, Philos Mag. 20, 1001 (1910)CrossRefGoogle Scholar
  15. 15.
    Y. Tomabechi, K. Matsumura, Electron. Commun. Jpn. 76, 27 (1993)CrossRefGoogle Scholar
  16. 16.
    M. Oxborrow, How to simulate the whispering-gallery modes of dielectric microresonators in FEMLAB/COMSOL, in Proc. SPIE 6452, Laser Resonators and Beam Control IX (2007), p. 64520JGoogle Scholar
  17. 17.
    Q. Huang, Z. Shu, G. Song, J. Chen, J. Xia, J. Yu, Opt. Express 22, 3219 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    L. Chen, C.K. Ong, B.T.G. Tan, IEEE Trans. Instrum. Meas. 48(6), 1031 (1999)CrossRefGoogle Scholar
  19. 19.
    M.S. Kheir, H.F. Hammad, A. Omar, Prog. Electromagn. Res. B 43, 35–52 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • A. V. Smorodin
    • 1
  • A. S. Rybalko
    • 2
  • D. Konstantinov
    • 1
  1. 1.Okinawa Institute of Science and TechnologyOnnaJapan
  2. 2.B.Verkin Institute for Low Temperature Physics and EngineeringKharkivUkraine

Personalised recommendations