Advertisement

Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 742–748 | Cite as

IR Studies of the Spin–Nuclear Conversion in the Vicinity of \(\alpha \)-\(\beta \)- Transition in Cryodeposited Methane Films

  • A. Drobyshev
  • A. Aldiyarov
  • D. Sokolov
  • A. Shinbayeva
Article
  • 75 Downloads

Abstract

Solid methane belongs to a group of crystals containing hydrogen atoms, whose macroscopic properties are greatly influenced by the spin interaction of hydrogen nuclei. In particular, the methane molecule, which has four protons with spin I=1/2, has three total spin modifications: para-, ortho- and meta-states with three values of the total spin moments of 0, 1 and 2, respectively. Equilibrium concentrations of these modifications and relaxation times are dependent on the temperature, affecting the observed thermal properties of solid methane, such as thermal conductivity, specific heat, thermal expansion. In this paper, we attempt to explain the peculiarities of thin film growth of methane at cryogenic temperatures from the viewpoint of spin–nuclear transformations. Our observations of absorption intensity at a frequency corresponding to 1/2 of the absorption band amplitude of deformation vibrations record a step-like change in the position of the absorption band during the sample deposition process. The observed phenomenon, in our opinion, is the demonstration of spin transformations during deposition.

Keywords

Methane Spin Cryodeposit IR spectroscopy 

Notes

Acknowledgements

The work was financially supported by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan within the Program of the Special-purpose financing of fundamental research.

References

  1. 1.
    A. Nijman, N. Trappeniers, Physica 95 B, 147 (1978)Google Scholar
  2. 2.
    A.J. Nijman, N.J. Trappeniers, Chem. Phys. Lett. 47, 118 (1977)CrossRefGoogle Scholar
  3. 3.
    A.J. Nijman, J. Berlinsky, Phys. Rev. Lett. 38(8), 408 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    M. Sprik, A. Nijman, N. Trappeniers, Physica 98A, 231 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Miyamoto, M. Fushitani, D. Ando, T. Momose, J. Chem. Phys. 128, 114502 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    H. Franklin Frayer, E. George Ewing, J. Chem. Phys. 46, 1994 (1967)Google Scholar
  7. 7.
    H. Franklin Frayer, E. George Ewing, J. Chem. Phys. 48, 781 (1968)ADSCrossRefGoogle Scholar
  8. 8.
    I. Ozier, P.N. Yi, J. Chem. Phys. 47, 5458 (1967)ADSCrossRefGoogle Scholar
  9. 9.
    A.S. Drobyshev, N.V. Atapina, D.N. Garipogly, Fiz. Nizk. Temp. 19(5), 567 (1993)Google Scholar
  10. 10.
    A.S. Drobyshev, D.N. Garipogly, Fiz. Nizk. Temp. 16(7), 936 (1990)Google Scholar
  11. 11.
    R.F.Curl Jerome Jr., V.V. Kasper, K.S. Pitzer, J. Chem. Phys. 44, 4636 (1966)ADSCrossRefGoogle Scholar
  12. 12.
    A. Drobyshev, A. Aldiyarov, Zh Nurekeyev, A. Tychengulova, Kaz. Nat. Univ. Bull. Phys. Ser. 3(50), 97 (2014)Google Scholar
  13. 13.
    A.S. Drobyshev, T.A. Prokhodtseva, J. Low Temp. Phys. 119, 431 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    A. Drobyshev, A. Aldiyarov et al., Low. Temp. Phys. 41(6), 552 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Al-Faraibi Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations