Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 354–360 | Cite as

Highly Mobile Metastable State of He-4 Thin Films: A Glass Transition by Mechanical Perturbation?

  • Tomoki Minoguchi


Solid layers of helium on graphite surface are known to go into a highly mobile state (HMS) once the solid layer is enforced to slip on the substrate. The HMS collapses to the stable inert state with the lifetime extending over \(10^4\) s. In this paper, we suggest that the HMS is a structural glass by showing the similarities between the present system and an organic conductor named BEDT-TTF. The latter was recently discovered to be an electronic glass if the cooling rate is rapid enough across the freezing temperature (Wigner crystal formation temperature). We then address a novel annealing process promoted by a local condensate which should be seen for the present He-4 case as the condensation fraction grows in the liquid overlayer.


Glass He-4 Helium Superfluid Solid Graphite Mass decoupling TLS Supersolidity Kauzmann temperature Strong glass Fragile glass Annealing Fragility 



The author would like to acknowledge Dr. Kagawa for his kind communication disclosing details of their findings of charge glass in BEDT-TTF.


  1. 1.
    M. Walker, C. Jaye, J. Krim, M.W. Cole, J. Phys. Condens. Matter 24, 424201 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    P. Mohandas, C.P. Lusher, V.A. Mikheev, B. Cowan, J. Saunders, J. Low Temp. Phys. 101, 481 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    P. Corboz, M. Boninsegni, L. Pollet, M. Troyer, Phys. Rev. B 78, 245414 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    N. Hosomi, J. Taniguchi, M. Suzuki, T. Minoguchi, Phys. Rev. B 79, 172503 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    N. Hosomi, A. Tanabe, M. Suzuki, Phys. Rev. B 75, 064513 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    K. Kagawa, T. Sato, K. Miyagawa, K. Kanoda, Y. Tokura, K. Kobayashi, R. Kumai, Y. Murakami, Nat. Phys. Lett. 9, 419 (2013)CrossRefGoogle Scholar
  7. 7.
    T. Sato, K. Kagawa, K. Miyagawa, K. Kanoda, R. Kumai, Y. Tokura, Phys. Rev. B 89, 121102(R) (2014)ADSCrossRefGoogle Scholar
  8. 8.
    H. Mori, S. Tanaka, T. Mori, Phys. Rev. B 57, 12023 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    A.F. Andreev, JETP Lett. 85, 585 (2007)CrossRefGoogle Scholar
  10. 10.
    S.E. Korshunov, JETP Lett. 90, 156 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    L. Leuzzi, T.M. Nieuwenhuizen, Thermo-dynamics of the glassy state (CRC Press Taylor and Francis Group, New York, 2008)MATHGoogle Scholar
  13. 13.
    M. Boninsegni, N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 96, 105301 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    S. Sastry, Nature 409, 164 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    K. Yoshimi, H. Maebashi, J. Phys. Soc. Jpn. 81, 063003 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    S. Mahmoudian, L. Rademaker, A. Ralko, S. Fratini, V. Dobrosavljevic, Phys. Rev. Lett. 115, 025701 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    T. Yoshida, C. Hotta, Phys. Rev. B 90, 245115 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    A.J. Leggett, D.C. Vural, J. Phys. Chem. B 117, 12966 (2013)CrossRefGoogle Scholar
  19. 19.
    W. Lechner, P. Zoller, Phys. Rev. lett. 111, 185306 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of TokyoTokyoJapan

Personalised recommendations