Advertisement

Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 334–339 | Cite as

Theory of Adiabatic Fountain Resonance

Article
  • 89 Downloads

Abstract

The theory of “Adiabatic Fountain Resonance” with superfluid \(^4\hbox {He}\) is clarified. In this geometry a film region between two silicon wafers bonded at their outer edge opens up to a central region with a free surface. We find that the resonance in this system is not a Helmholtz resonance as claimed by Gasparini et al., but in fact is a fourth sound resonance. We postulate that it occurs at relatively low frequency because the thin silicon wafers flex appreciably from the pressure oscillations of the sound wave.

Keywords

Superfluid acoustics Adiabatic Fountain Resonance Fourth sound 

Notes

Acknowledgements

We thank Seth Putterman for useful discussions.

References

  1. 1.
    F. Gasparini, S. Mehta, J. Low Temp. Phys. 110, 293 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    F. Gasparini, M. Kimball, S. Mehta, J. Low Temp. Phys. 125, 215 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    F. Gasparini, M. Kimball, K. Mooney, J. Phys.: Condens. Matter 13, 4871 (2001)ADSGoogle Scholar
  4. 4.
    M. Kimball, F. Gasparini, Phys. Rev. Lett. 86, 1558 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    S. Mehta, M. Kimball, F. Gasparini, J. Low Temp. Phys. 114, 467 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    K. Mooney, F. Gasparini, J. Low Temp. Phys. 126, 247 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    M. Kimball, M. Diaz-Avila, F. Gasparini, Phys. B 329–333, 248 (2003)CrossRefGoogle Scholar
  8. 8.
    M. Diaz-Avila, M. Kimball, F. Gasparini, J. Low Temp. Phys. 134, 613 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    F.M. Gasparini, M.O. Kimball, K.P. Mooney, M. Diaz-Avila, Rev. Mod. Phys. 80, 1009 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J.K. Perron, M.O. Kimball, K.P. Mooney, F.M. Gasparini, Nat. Phys. 6, 499 (2010)CrossRefGoogle Scholar
  11. 11.
    J.K. Perron, F.M. Gasparini, J. Low Temp. Phys. 162, 136 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    J.K. Perron, F.M. Gasparini, Phys. Rev. Lett. 109, 035302 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    J.K. Perron, M.O. Kimball, K.P. Mooney, F.M. Gasparini, Phys. Rev. B 87, 094507 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    J.K. Perron, F.M. Gasparini, J. Low Temp. Phys. 171, 589 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    K.R. Atkins, Phys. Rev. 113, 962 (1959)ADSCrossRefGoogle Scholar
  16. 16.
    I. Rudnick, K.A. Shapiro, Phys. Rev. Lett. 9, 191 (1962)ADSCrossRefGoogle Scholar
  17. 17.
    G. Williams, R. Rosenbaum, I. Rudnick, Phys. Rev. Lett. 42, 1282 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    G. Jelatis, J. Roth, J. Maynard, Phys. Rev. Lett. 42, 1285 (1979)ADSCrossRefGoogle Scholar
  19. 19.
    I. Rudnick, J. Maynard, G. Williams, S. Putterman, Phys. Rev. B 20, 1934 (1979)ADSCrossRefGoogle Scholar
  20. 20.
    L. Kinsler, A. Frey, A. Coppens, J. Sanders, Fundamentals of Acoustics, 4th edn. (Wiley, New York, 2000)Google Scholar
  21. 21.
    V. Ambegaokar, B.I. Halperin, D.R. Nelson, E.D. Siggia, Phys. Rev. B 21, 1806 (1980)ADSCrossRefGoogle Scholar
  22. 22.
    J. Robinson, Phys. Rev. 82, 440 (1951)ADSCrossRefGoogle Scholar
  23. 23.
    G.L. Pollack, Rev. Mod. Phys. 41, 48 (1969)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations