Skip to main content
Log in

Use of Two-Body Correlated Basis Functions with van der Waals Interaction to Study the Shape-Independent Approximation for a Large Number of Trapped Interacting Bosons

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study the ground-state and the low-lying excitations of a trapped Bose gas in an isotropic harmonic potential for very small (\(\sim \)3) to very large (\(\sim \) \(10^7\)) particle numbers. We use the two-body correlated basis functions and the shape-dependent van der Waals interaction in our many-body calculations. We present an exhaustive study of the effect of inter-atomic correlations and the accuracy of the mean-field equations considering a wide range of particle numbers. We calculate the ground-state energy and the one-body density for different values of the van der Waals parameter \(C_{6}\). We compare our results with those of the modified Gross–Pitaevskii results, the correlated Hartree hypernetted-chain equations (which also utilize the two-body correlated basis functions), as well as of the diffusion Monte Carlo for hard sphere interactions. We observe the effect of the attractive tail of the van der Waals potential in the calculations of the one-body density over the truly repulsive zero-range potential as used in the Gross–Pitaevskii equation and discuss the finite-size effects. We also present the low-lying collective excitations which are well described by a hydrodynamic model in the large particle limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  2. C.C. Bradley et al., Phys. Rev. Lett. 75, 1687 (1995)

    Article  ADS  Google Scholar 

  3. K.K. Davis et al., Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  Google Scholar 

  4. D.S. Jin, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 77, 420 (1996)

    Article  ADS  Google Scholar 

  5. D.S. Jin et al., Phys. Rev. Lett. 78, 764 (1997)

    Article  ADS  Google Scholar 

  6. S. Stringari, Phys. Rev. Lett. 77, 2360 (1996)

    Article  ADS  Google Scholar 

  7. F. Dalfovo, S. Stringari, Phys. Rev. A 53, 2477 (1996)

    Article  ADS  Google Scholar 

  8. H. Hu, G. Xianlong, X.J. Liu, Phys. Rev. A 90, 013622 (2014)

    Article  ADS  Google Scholar 

  9. A. Csordas, Z. Adam, Phys. Rev. A 74, 035602 (2006)

    Article  ADS  Google Scholar 

  10. D.V. Fil, S.I. Shevchenko, Phys. Rev. A 64, 013607 (2001)

    Article  ADS  Google Scholar 

  11. J.P. Martikainen, Phys. Rev. A 63, 043602 (2001)

    Article  ADS  Google Scholar 

  12. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  13. F. Dalfovo, S. Giorgini, M. Guilleumas, L. Pitaevskii, S. Stringari, Phys. Rev. A 56, 3840 (1997)

    Article  ADS  Google Scholar 

  14. S. Cowell, H. Heiselberg, I.E. Mazets, J. Morales, V.R. Pandharipande, C.J. Pethick, Phys. Rev. Lett. 88, 210403 (2002)

    Article  ADS  Google Scholar 

  15. S. Giorgini, J. Boronat, J. Casulleras, Phys. Rev. A 60, 5129 (1999)

    Article  ADS  Google Scholar 

  16. D. Blume, C.H. Greene, Phys. Rev. A 63, 063601 (2001)

    Article  ADS  Google Scholar 

  17. A. Fabrocini, A. Polls, Phys. Rev. A 60, 2319 (1999)

    Article  ADS  Google Scholar 

  18. A. Fabrocini, A. Polls, Phys. Rev. A 64, 063610 (2001)

    Article  ADS  Google Scholar 

  19. M. Fabre de la Ripelle, Ann. Phys. 147, 281 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  20. B. Chakrabarti, T.K. Das, Phys. Rev. A 81, 015601 (2010)

    Article  ADS  Google Scholar 

  21. A. Biswas, T.K. Das, L. Salasnich, B. Chakrabarti, Phys. Rev. A 82, 043607 (2010)

    Article  ADS  Google Scholar 

  22. S. Goswami, T.K. Das, A. Biswas, Phys. Rev. A 84, 053617 (2011)

    Article  ADS  Google Scholar 

  23. S. Bhattacharyya, T.K. Das, B. Chakrabarti, Phys. Rev. A 88, 053614 (2013)

    Article  ADS  Google Scholar 

  24. S.K. Halder, B. Chakrabarti, T.K. Das, A. Biswas, Phys. Rev. A 88, 033602 (2013)

    Article  ADS  Google Scholar 

  25. T.K. Das, B. Chakrabarti, Phys. Rev. A 70, 063601 (2004)

    Article  ADS  Google Scholar 

  26. T.K. Das, S. Canuto, A. Kundu, B. Chakrabarti, Phys. Rev. A 75, 042705 (2007)

    Article  ADS  Google Scholar 

  27. T.K. Das, A. Kundu, S. Canuto, B. Chakrabarti, Phys. Lett. A 373, 258 (2009)

    Article  ADS  Google Scholar 

  28. J.L. Ballot, M. Fabre de la Ripelle, Ann. Phys. 127, 62 (1980)

    Article  ADS  Google Scholar 

  29. T.K. Das, H.T. Coelho, M. Fabre de la Ripelle, Phys. Rev. C 26, 2281 (1982)

    Article  ADS  Google Scholar 

  30. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (National Institute of Standards and Technology, Maryland, 1964)

    MATH  Google Scholar 

  31. S.A. Sofianos, T.K. Das, B. Chakrabarti, M.L. Lekala, R.M. Adam, G.J. Rampho, Phys. Rev. A 87, 013608 (2013)

    Article  ADS  Google Scholar 

  32. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  33. B. Gao, Phys. Rev. A 58, 4222 (1998)

    Article  ADS  Google Scholar 

  34. M.L. Lekala, B. Chakrabarti, G.J. Rampho, T.K. Das, S.A. Sofianos, R.A. Adam, Phys. Rev. A 89, 023624 (2014)

    Article  ADS  Google Scholar 

  35. B. Chakrabarti, T.K. Das, Phys. Rev. A 78, 063608 (2008)

    Article  ADS  Google Scholar 

  36. B.D. Esry, Phys. Rev. A 55, 1147 (1997)

    Article  ADS  Google Scholar 

  37. T. Haugset, H. Haugerud, Phys. Rev. A 57, 3809 (1998)

    Article  ADS  Google Scholar 

  38. B.D. Esry, C.H. Greene, Phys. Rev. A 60, 1451 (1999)

    Article  ADS  Google Scholar 

  39. A. Biswas, B. Chakrabarti, T.K. Das, J. Chem. Phys. 133, 104502 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

BC acknowledges the financial support of Department of Science and Technology (DST), Government of India, under a Major Research Project [Sanc. No. SR/S2/CMP-126/2012].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Rampho.

Additional information

S. A. Sofianos—deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekala, M.L., Chakrabarti, B., Das, T.K. et al. Use of Two-Body Correlated Basis Functions with van der Waals Interaction to Study the Shape-Independent Approximation for a Large Number of Trapped Interacting Bosons. J Low Temp Phys 187, 232–250 (2017). https://doi.org/10.1007/s10909-016-1732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1732-4

Keywords

Navigation