Pressure Dependence of the Ginzburg–Landau Parameter in Superconducting \(\hbox {YB}_{6}\)


We present measurements of the superconducting critical temperature \(T_\mathrm{c}\), the upper critical field \(H_{\mathrm{c}2}\) and the third critical field \(H_{\mathrm{c}3}\) as a function of pressure in BCS type-II superconductor \(\hbox {YB}_{6}\,(T_\mathrm{c} = 7.5\,\hbox {K}, H_{\mathrm{c}2}(0) = 270\,\hbox {mT}\) and \(H_{\mathrm{c}3}(0) = 450\,\hbox {mT}\) at ambient pressure) up to 3 GPa. Magnetic susceptibility measurements down to 2 K have shown a negative pressure effect on \(T_\mathrm{c}\) as well as on \(H_{\mathrm{c}2}\) with slopes \(\mathrm{d}T_\mathrm{c}/\mathrm{d}p = -0.531\,\hbox {K/GPa}\,(\mathrm{d}\,\hbox {ln}\,T_\mathrm{c}/{\mathrm{d}p} = -7.1\,\%/\hbox {GPa})\) and \(\mathrm{d}H_{\mathrm{c}2}(0)/\mathrm{d}p = -37\,\hbox {mT/GPa}\,(\mathrm{d}\,\hbox {ln}\,H_{\mathrm{c}2}/{\mathrm{d}p} = -14\,\%/\hbox {GPa})\), respectively. Parallel magnetoresistance measurements evidenced nearly the same slopes of \(\mathrm{d}\,\hbox {ln}\,T_\mathrm{c}/{\mathrm{d}p} = -5.9\,\%/\hbox {GPa}\,(\mathrm{d}\,\hbox {ln}\,H_{\mathrm{c}3}/{\mathrm{d}p} = -11\,\%/\hbox {GPa})\) in the equal pressure range. From these results, the estimated pressure effect on the coherence length \(\mathrm{d}\xi (0)/{\mathrm{d}p} = 2.05\,\hbox {nm/GPa}\) together with the supposed zero pressure effect on the magnetic penetration depth (\(\mathrm{d}\lambda (0)/{\mathrm{d}p} \approx 0\)) implies that the Ginzburg–Landau parameter \(\kappa (0) = {\lambda }(0)/{\xi }(0)\) decreases with pressure as \(\mathrm{d}\kappa (0)/\mathrm{d}{p} = -0.31/\hbox {GPa}\). According to this decrease, a transition from type-II to type-I superconductor should be observed in \(\hbox {YB}_{6}\) at a critical pressure \(p_\mathrm{c} \approx 10\,\hbox {GPa}\).

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    R. Lortz et al., Phys. Rev. B 73, 024512 (2006). doi:10.1103/PhysRevB.73.024512

    ADS  Article  Google Scholar 

  2. 2.

    R. Khasanov et al., Phys. Rev. Lett. 97, 157002 (2006). doi:10.1103/PhysRevLett.97.157002

    ADS  Article  Google Scholar 

  3. 3.

    E. Helfand et al., Phys. Rev. 147, 265 (1966). doi:10.1103/PhysRev.147.295

    MathSciNet  Article  Google Scholar 

  4. 4.

    S. Gabáni et al., Phys. Rev. B 90, 045136 (2014). doi:10.1103/PhysRevB.90.045136

    ADS  Article  Google Scholar 

  5. 5.

    M. Marcin et al., will be published

Download references


This work was supported by projects VEGA 2/0032/16, APVV-14-0605, and by CFNT MVEP project of the Slovak Academy of Sciences. Sponsorship of US Steel Kosice is appreciated too.

Author information



Corresponding author

Correspondence to S. Gabáni.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gabáni, S., Orendáč, M., Kušnír, J. et al. Pressure Dependence of the Ginzburg–Landau Parameter in Superconducting \(\hbox {YB}_{6}\) . J Low Temp Phys 187, 559–564 (2017).

Download citation


  • Superconductivity
  • High pressures
  • Magnetic susceptibility