Advertisement

Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 618–626 | Cite as

Exploding and Imaging of Electron Bubbles in Liquid Helium

  • Neha Yadav
  • Vaisakh Vadakkumbatt
  • Humphrey J. Maris
  • Ambarish Ghosh
Article
  • 206 Downloads

Abstract

An electron bubble in liquid helium-4 under the saturated vapor pressure becomes unstable and explodes if the pressure becomes more negative than −1.9 bars. In this paper, we use focused ultrasound to explode electron bubbles. We then image at 30,000 frames per second the growth and subsequent collapse of the bubbles. We find that bubbles can grow to as large as 1 mm in diameter within 2 ms after the cavitation event. We examine the relation between the maximum size of the bubble and the lifetime and find good agreement with the experimental results.

Keywords

Cavitation 1 Single electron bubbles 2 Superfluid helium 3 

Notes

Acknowledgements

This work was supported by Nanomission, Science and Engineering Research Board, India, by the US National Science Foundation through Grant No. GR5260053, and by the Julian Schwinger Foundation Grant JSF-15-05-0000. The usage of the facilities in Micro and Nano Characterization Facility (MNCF, CeNSE) at IISc is gratefully acknowledged, and the work is partially supported by the Ministry of Communication and Information Technology under a grant for the Centre of Excellence in Nanoelectronics, Phase II.

References

  1. 1.
    H.J. Maris, J. Phys. Soc. Japan 77, 111008 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    C.C. Grimes, G. Adams, Phys. Rev. B 41, 6366 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    C.C. Grimes, G. Adams, Phys. Rev. B 45, 2305 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    A.Y. Parshin, S.V. Pereverzev, J. Exp. Theor. Phys. Lett. 52, 282 (1990)Google Scholar
  5. 5.
    C.L. Zipfel, T.M. Sanders, in Proceedings of the 11th International Conference on Low Temperature Physics, ed. by J.F. Allen, D.M. Finlayson, D.M. McCall (St. Andrews University, St. Andrews, 1969), p. 296Google Scholar
  6. 6.
    G.W. Rayfield, F. Reif, Phys. Rev. 136, A1194 (1964)ADSCrossRefGoogle Scholar
  7. 7.
    R.J. Donnelly, Quantized Vortices in Helium II (Cambridge, London, 1991)Google Scholar
  8. 8.
    V.A. Akulichev, Y.Y. Boguslavskii, Sov. Phys. JETP 35, 1012 (1972)ADSGoogle Scholar
  9. 9.
    J. Classen, C.K. Su, H.J. Maris, Phys. Rev. Lett. 77, 2006 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    J. Classen, C.K. Su, M. Mohazzab, H.J. Maris, Phys. Rev. B 57, 3000 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    D. Konstantinov, H.J. Maris, Phys. Rev. Lett. 90, 025302 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    P. Roche et al., Czech. J. Phys. 46, 381 (1996)CrossRefGoogle Scholar
  13. 13.
    W. Lauterborn, T. Kurz, Rep. Prog. Phys. 73, 106501 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Neha Yadav
    • 1
  • Vaisakh Vadakkumbatt
    • 1
  • Humphrey J. Maris
    • 2
  • Ambarish Ghosh
    • 1
    • 3
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.Physics DepartmentBrown UniversityProvidenceUSA
  3. 3.Centre for Nano Science and EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations