Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 413–418 | Cite as

The Damping and Drag Coefficient of Quartz Tuning Fork in Superfluid \(^{3}\hbox {He}\)\(^{4}\hbox {He}\) Solutions in the Laminar Flow

  • V. A. Bakhvalova
  • V. K. Chagovets
  • I. A. Gritsenko
  • G. A. Sheshin
Article

Abstract

The \(^{3}\)He impurity influence on the oscillations of a quartz resonator and thus its drag coefficient in a laminar flow of a superfluid \(^{3}\)He–\(^{4}\)He mixture has been investigated. The temperature dependences of the resonance curves were measured on quartz tuning forks with a resonance frequency 32 kHz in vacuum in superfluid mixtures with \(^{3}\)He concentrations of \(x_{3}=0.05\) and 0.15 in a wide range of driving forces at temperatures from 0.5–2.5 K. The results obtained were used to plot the temperature dependence of the drag coefficient. With the help of the normalization on the effective area of the oscillating body, the concentration dependence of the drag coefficient of the quartz tuning fork and the vibrating sphere in superfluid solutions has been constructed and analyzed.

Keywords

Quartz tuning forks Drag coefficient \(^{3}\)He–\(^{4}\)He mixtures 

Notes

Acknowledgements

The research was partially supported by Research Youth Project of NAS of Ukraine (No. 5/H-2015).

References

  1. 1.
    H. Kerscher, M. Niemetz, W. Schoepe, J. Low Temp. Phys. 124, 163 (2001). doi: 10.1023/A:1017525901859 ADSCrossRefGoogle Scholar
  2. 2.
    J. Jager, B. Schuderer, W. Schoepe, Phys. Rev. Lett. 74, 566 (1995). doi: 10.1103/PhysRevLett.74.566 ADSCrossRefGoogle Scholar
  3. 3.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1966)MATHGoogle Scholar
  4. 4.
    I.A. Gritsenko, A.A. Zadorozhko, A.S. Neoneta, V.K. Chagovets, G.A. Sheshin, Low Temp. Phys. 37, 551 (2011). doi: 10.1063/1.3626842 ADSCrossRefGoogle Scholar
  5. 5.
    I.A. Gritsenko, A.A. Zadorozhko, E.Y. Rudavskii, V.K. Chagovets, G.A. Sheshin, J. Low Temp. Phys. 158, 450 (2010). doi: 10.1007/s10909-009-9950-7 ADSCrossRefGoogle Scholar
  6. 6.
    D.I. Bradley, M. Clovecko, S.N. Fisher, D. Garg, E. Guise, R.P. Haley, O. Kolosov, G.R. Pickett, V. Tsepelin, Phys. Rev. B 85, 014501 (2012). doi: 10.1103/PhysRevB.85.014501 ADSCrossRefGoogle Scholar
  7. 7.
    V.A. Bakhvalova, I.A. Gritsenko, E.Y. Rudavskii, V.K. Chagovets, G.A. Sheshin, Low Temp. Phys. 41, 502 (2015). doi: 10.1063/1.4927312 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • V. A. Bakhvalova
    • 1
    • 2
  • V. K. Chagovets
    • 1
    • 2
  • I. A. Gritsenko
    • 1
    • 2
  • G. A. Sheshin
    • 1
    • 2
  1. 1.ILTPE - B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of UkraineKharkivUkraine
  2. 2.V. N. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations