Skip to main content
Log in

Cooling by Thermodynamic Induction

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal–insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Pobell, Matter and Methods at Low Temperatures, 2nd edn. (Springer, Berlin, 1996)

    Book  Google Scholar 

  2. T.W. Hänsch, A.L. Schawlow, Opt. Commun. 13, 68 (1975)

    Article  ADS  Google Scholar 

  3. D.J. Wineland, R.E. Drullinger, F.L. Walls, Phys. Rev. Lett. 40, 1639 (1978)

    Article  ADS  Google Scholar 

  4. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  5. W. Ketterle, N.J. Van Druten, in Advances in Atomic, Molecular, and Optical Physics, ed. by B. Bederson, H. Walther (Academic Press, London, 1996)

    Google Scholar 

  6. S.N. Patitsas, Phys. Rev. E 89, 012108 (2014)

    Article  ADS  Google Scholar 

  7. S.N. Patitsas, Phys. A 436, 604 (2015)

    Article  MathSciNet  Google Scholar 

  8. N.W. Ashcroft, D.N. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    MATH  Google Scholar 

  9. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover Publications, New York, 1984)

    MATH  Google Scholar 

  10. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw Hill, New York, 1965)

    Google Scholar 

  11. L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1 (Elsevier, New York, 1980)

    Google Scholar 

  12. S. Datta, Quantum Transport: Atom to Transistor (Cambridge, New York, 2005)

    Book  MATH  Google Scholar 

  13. R. Landauer, Philoso. Mag. 21, 863 (1970)

    Article  ADS  Google Scholar 

  14. H.-L. Engquist, P.W. Anderson, Phys. Rev. B 24, 1151 (1981)

    Article  ADS  Google Scholar 

  15. M.Y. Azbel, D.P. DiVincenzo, Phys. Rev. B 30, 6877 (1984)

    Article  ADS  Google Scholar 

  16. M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31, 6207 (1985)

    Article  ADS  Google Scholar 

  17. P.C. Martin, J. Schwinger, Phys. Rev. 115, 1342 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  18. L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Benjamin/Cummings, New York, 1962)

    MATH  Google Scholar 

  19. L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1965)

    MathSciNet  Google Scholar 

  20. Y. Lu, J.Y. Huang, C. Wang, S. Sun, J. Lou, Nat. Nanotechnol. 5, 218 (2010)

    Article  ADS  Google Scholar 

  21. A.C. Ehrlich, J.T. Schriempf, Solid State Commun. 14, 469 (1974)

    Article  ADS  Google Scholar 

  22. A.J. Barber, A.D. Caplin, J. Phys. F Metal Phys. 5, 679 (1975)

    Article  ADS  Google Scholar 

  23. E.R. Rumbo, J. Phys. F Metal Phys. 6, 85 (1976)

    Article  ADS  Google Scholar 

  24. J.F. Kos, J. Phys. Condens. Matter 2, 4859 (1990)

    Article  ADS  Google Scholar 

  25. B.R. Barnard, A.D. Caplin, M.N.B. Dalimin, J. Phys. F Metal Phys. 12, 719 (1982)

    Article  ADS  Google Scholar 

  26. R. Matula, J. Phys. Chem. Ref. Data 8, 1147 (1979)

    Article  ADS  Google Scholar 

  27. S. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  28. K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, Solid State Commun. 146, 351 (2008)

    Article  ADS  Google Scholar 

  29. W. Pan, J.-S. Xia, V. Shvarts, D.E. Adams, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. Lett. 83, 3530 (1999)

    Article  ADS  Google Scholar 

  30. D. Laroche, G. Gervais, M.P. Lilly, J.L. Reno, Nat. Nanotechnol. 6, 793 (2011)

    Article  ADS  Google Scholar 

  31. F. Hartmann, P. Pfeffer, S. Höfling, M. Kamp, L. Worschech, Phys. Rev. Lett. 114, 146805 (2015)

    Article  ADS  Google Scholar 

  32. X. Obradors, L.M. Paulius, M.B. Maple, J.B. Torrance, A.I. Nazzal, J. Fontcuberta, X. Granados, Phys. Rev. B 47, 12353 (1993)

    Article  ADS  Google Scholar 

  33. M. Imada, A. Fujimori, A. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  34. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Phys. Rev. B 51, 14103 (1995)

    Article  ADS  Google Scholar 

  35. H. Kawano, R. Kajimoto, M. Kubota, H. Yoshizawa, Phys. Rev. B 53, R14709 (1996)

    Article  ADS  Google Scholar 

  36. I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, R. Venkatasubramanian, Nat. Nanotechnol. 4, 235 (2009)

    Article  ADS  Google Scholar 

  37. W. Hafez, M. Feng, Appl. Phys. Lett. 86, 152101 (2005)

    Article  ADS  Google Scholar 

  38. Y.-M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.-Y. Chiu, A. Grill, P. Avouris, Science 327, 662 (2010)

    Article  ADS  Google Scholar 

  39. A. Imamoglu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Phys. Rev. Lett. 83, 4204 (1999)

    Article  ADS  Google Scholar 

  40. I. Garate, I. Affleck, Phys. Rev. Lett. 106, 156803 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank Cathy J. Meyer for her assistance in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Patitsas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patitsas, S.N. Cooling by Thermodynamic Induction. J Low Temp Phys 186, 316–346 (2017). https://doi.org/10.1007/s10909-016-1711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1711-9

Keywords

Navigation