Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 482–489 | Cite as

Double-Paddle Oscillators as Probes of Quantum Turbulence in the Zero Temperature Limit

  • David Schmoranzer
  • Martin Jackson
  • Elisa Zemma
  • Javier Luzuriaga


We present a technical report on our tests of a double-paddle oscillator as a detector of quantum turbulence in superfluid \(^{4}\)He at low temperatures ranging from 20 to 1100 mK. The device, known to operate well in the two-fluid regime (Zemma and Luzuriaga in J Low Temp Phys 166:171–181, 2012), is also capable of detecting quantum turbulence in the zero temperature limit. The oscillator demonstrated Lorentzian responses with quality factors of order \(10^5\) in vacuum, and displayed negative-Duffing resonances in liquid, even at moderate drives. In superfluid He-II at low temperatures, its sensitivity was adversely affected by acoustic damping at higher harmonics. While it successfully created and detected the quantum turbulence, its overall performance does not compare favourably with other oscillators such as tuning forks.


Superfluid helium Quantum turbulence Double-paddle 



The authors appreciate the technical assistance of Michal Kohout and Eva Schmoranzerova. This research is supported by the Grant 7AMB15AR026 under the EU-7AMB Mobility scheme and by the Czech Science Foundation under project GAČR 203/14/02005S. DS also acknowledges institutional support under UNCE 2040.


  1. 1.
    R.N. Kleiman, G.K. Kaminsky, J.D. Reppy, R. Pindak, D.J. Bishop, Rev. Sci. Instrum. 56, 2088 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    C.L. Spiel, R.O. Pohl, A.T. Zehnder, Rev. Sci. Instrum. 72, 1482 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    E. Zemma, J. Luzuriaga, J. Low Temp. Phys. 166, 171–181 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    D.I. Bradley, P. Crookston, M.J. Fear, S.N. Fisher, G. Foulds, D. Garg, A.M. Guénault, E. Guise, R.P. Haley, O. Kolosov, G.R. Pickett, R. Schanen, V. Tsepelin, J. Low Temp. Phys. 161, 536–547 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, Berlin, 1983)CrossRefMATHGoogle Scholar
  6. 6.
    W.F. Vinen, L. Skrbek, H.A. Nichol, J. Low Temp. Phys. 135, 423–445 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    R.J. Donnelly, Annu. Rev. Fluid Mech. 25, 325–371 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    M. González, P. Bhupathi, B.H. Moon, P. Zheng, G. Ling, E. Garcell, H.B. Chan, Y. Lee, J. Low Temp. Phys. 162, 661–668 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    J. Jäger, B. Schuderer, W. Schoepe, Phys. Rev. Lett. 74, 566 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    D. Schmoranzer, M. La Mantia, G. Sheshin, I. Gritsenko, A. Zadorozhko, M. Rotter, L. Skrbek, J. Low Temp. Phys. 163, 317–344 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    D.I. Bradley, M. Človečko, S.N. Fisher, D. Garg, E. Guise, R.P. Haley, O. Kolosov, G.R. Pickett, V. Tsepelin, Phys. Rev. B 85, 014501 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    S.L. Ahlstrom, D.I. Bradley, M. Človečko, S.N. Fisher, A.M. Guénault, E.A. Guise, R.P. Haley, O. Kolosov, P.V.E. McClintock, G.R. Pickett, M. Poole, V. Tsepelin, A.J. Woods, Phys. Rev. B 89, 014515 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Charles UniversityPragueCzech Republic
  2. 2.Centro Atómico BarilocheInstituto Balseiro, UNC, CNEABarilocheArgentina

Personalised recommendations