Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 633–638 | Cite as

A Compact Rotating 1K Cryostat for Helium 4 Studies

  • Takahiko Makiuchi
  • Satoshi Murakawa
  • Keiya Shirahama
Article
  • 151 Downloads

Abstract

Recent studies of rotating superfluid \(^3\)He and \(^4\)He had led to construct massive rotating refrigerators. We have built, on the other hand, a compact, inexpensive and easily operated rotating cryostat for search for novel superfluid phenomena. Our new rotating cryostat is so simple that one operator can handle it and make continuous measurements. The cryostat and electronic devices are rotated as a whole by a servomotor directly attached underneath. The maximal rotation angular velocity is 6.28 rad/s, which is an intermediate value in existing rotating cryostats. The performance during rotation is discussed.

Keywords

Rotation Cryogenics Superfluid \({}^4\)He 

Notes

Acknowledgements

This work was supported by Grant-in-Aid Scientific Research (S) (Grant No. 21224010) and Grant-in-Aid for Challenging Exploratory Research (26610106) from JSPS.

References

  1. 1.
    R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)Google Scholar
  2. 2.
    H. Hall, W. Vinen, Proc. R. Soc. A 238, 204 (1956)ADSCrossRefGoogle Scholar
  3. 3.
    P. Bendt, Phys. Rev. 153, 280 (1967)ADSCrossRefGoogle Scholar
  4. 4.
    R. Blaauwgeers, S. Boldarev, V.B. Eltsov, A.P. Finne, M. Krusius, J. Low Temp. Phys. 132, 263 (2003); references thereinGoogle Scholar
  5. 5.
    D. Takahashi, K. Kono, A.I.P. Conf. Proc. 850, 1567 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    M.J. Fear, P.M. Walmsley, D.A. Chorlton, D.E. Zmeev, S.J. Gillott, M.C. Sellers, P.P. Richardson, H. Agrawal, G. Batey, A.I. Golov, Rev. Sci. Instrum. 84, 103905 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    S.I. Shevchenko, JETP Lett. 28, 103 (1978)ADSGoogle Scholar
  8. 8.
    H. Wei, R. Han, X. Wei, Phys. Rev. Lett. 75, 2071 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Sato, R.E. Packard, Rep. Prog. Phys. 75, 016401 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    K. Shirahama, K. Yamamoto, Y. Shibayama, J. Phys. Soc. Jpn. 77, 111011 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    A.L. Fetter, Phys. Rev. 153, 285 (1967)ADSCrossRefGoogle Scholar
  12. 12.
    L.E. DeLong, O.G. Symko, J.C. Wheatley, Rev. Sci. Instrum. 42, 147 (1971)ADSCrossRefGoogle Scholar
  13. 13.
    S. Murakawa, R. Higashino, K. Yoshimura, Y. Chikazawa, T. Tanaka, K. Kuriyama, K. Honda, Y. Shibayama, K. Shirahama, J. Phys. Conf. Ser. 400, 012053 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsKeio UniversityYokohamaJapan
  2. 2.Cryogenic Research CenterUniversity of TokyoBunkyo, TokyoJapan

Personalised recommendations