Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 580–587 | Cite as

Stable Trapping of Multielectron Helium Bubbles in a Paul Trap

  • E. M. Joseph
  • V. Vadakkumbatt
  • A. Pal
  • A. Ghosh


In a recent experiment, we have used a linear Paul trap to store and study multielectron bubbles (MEBs) in liquid helium. MEBs have a charge-to-mass ratio (between 10\(^{-4}\) and 10\(^{-2}\) C/kg) which is several orders of magnitude smaller than ions (between 10\(^6\) and 10\(^8\) C/kg) studied in traditional ion traps. In addition, MEBs experience significant drag force while moving through the liquid. As a result, the experimental parameters for stable trapping of MEBs, such as magnitude and frequency of the applied electric fields, are very different from those used in typical ion trap experiments. The purpose of this paper is to model the motion of MEBs inside a linear Paul trap in liquid helium, determine the range of working parameters of the trap, and compare the results with experiments.


Multielectron bubbles Paul trap 



This work was supported by Nanomission, Science and Engineering Research Board, India. The usage of the facilities in Micro and Nano Characterization Facility (MNCF, CeNSE) at IISc is gratefully acknowledged, and the work is partially supported by the Ministry of Communication and Information Technology under a grant for the Centre of Excellence in Nanoelectronics, Phase II.


  1. 1.
    R.E. March, J.F. Todd, Quadrupole Ion Trap Mass Spectrometry, vol. 165 (Wiley, Hoboken, 2005)CrossRefGoogle Scholar
  2. 2.
    D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Optical atomic clocks. Rev. Mod. Phys. 87, 637 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    H. Hffner, C.F. Roos, R. Blatt, Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    W. Paul, Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    J. Tempere, I. Silvera, J.T. Devreese, Multielectron bubbles in helium as a paradigm for studying electrons on surfaces with curvature. Surf. Sci. Rep. 62, 159–217 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    W. Guo, D. Jin, H.J. Maris, Stability of multielectron bubbles in liquid helium. Phys. Rev. B 78, 014511 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    A. Volodin, M. Khaikin, V. Edelman, Development of instability and bubblon production on a charged surface of liquid helium. JETP Lett. 26(543), 10 (1977)Google Scholar
  9. 9.
    U. Albrecht, P. Leiderer, Multielectron bubbles in liquid helium. EPL 3, 705 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    V. Vadakkumbatt, E. Joseph, A. Pal, A. Ghosh, Surface instabilities and generation of multielectron bubbles under pulsed electric fields. J. Low Temp. Phys. 171, 239–244 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    E. Joseph, V. Vadakkumbatt, A. Pal, A. Ghosh, High speed imaging of generation and collapse of multielectron bubbles in liquid helium. J. Low Temp. Phys. 175, 78–84 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    V. Vadakkumbatt, E. Joseph, A. Pal, A. Ghosh, Studying electrons on curved surfaces by trapping and manipulating multielectron bubbles in liquid helium. Nat. Commun. 5, 4571 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    D. Segal, M. Shapiro, Nanoscale paul trapping of a single electron. Nano Lett. 6, 1622–1626 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    T. Hasegawa, K. Uehara, Dynamics of a single particle in a Paul trap in the presence of the damping force. Appl. Phys. B 61, 159–163 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    W. Guan, S. Joseph, J.H. Park, P.S. Krsti, M.A. Reed, Paul trapping of charged particles in aqueous solution. Proc. Natl. Acad. Sci. 108, 9326–9330 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    E.A. Vinitsky, E.D. Black, K.G. Libbrecht, Particle dynamics in damped nonlinear quadrupole ion traps. Am. J. Phys. 83, 313–319 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    J. Magnaudet, I. Eames, The motion of high-Reynolds-number bubbles in inhomogeneous flows. Ann. Rev. Fluid Mech. 32, 659–708 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    R. Mei, J.F. Klausner, C.J. Lawrence, A note on the history force on a spherical bubble at finite Reynolds number. Phys. Fluids 6, 418–420 (1994)ADSCrossRefMATHGoogle Scholar
  19. 19.
    B. Chao, Motion of spherical gas bubbles in a viscous liquid at large Reynolds numbers. Phys. Fluids 1958–1988. 5, 69–79 (1962)Google Scholar
  20. 20.
    U. Albrecht, P. Leiderer, Unexpected hydrodynamic behavior of multielectron bubbles in liquid helium I. J. Low Temp. Phys. 86, 131–138 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • E. M. Joseph
    • 1
  • V. Vadakkumbatt
    • 2
  • A. Pal
    • 2
  • A. Ghosh
    • 1
    • 2
    • 3
  1. 1.Centre for Nano Science and EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Department of PhysicsIndian Institute of ScienceBangaloreIndia
  3. 3.Department of Electrical Communication EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations